
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Exploring Data Analytics without Decompression
on Embedded GPU Systems

Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen, Onur Mutlu, Xiaoyong Du

Abstract—With the development of computer architecture, even for embedded systems, GPU devices can be integrated, providing
outstanding performance and energy efficiency to meet the requirements of different industries, applications, and deployment
environments. Data analytics is an important application scenario for embedded systems. Unfortunately, due to the limitation of the
capacity of the embedded device, the scale of problems handled by the embedded system is limited. In this paper, we propose a novel
data analytics method, called G-TADOC, for efficient text analytics directly on compression on embedded GPU systems. A large
amount of data can be compressed and stored in embedded systems, and can be processed directly in the compressed state, which
greatly enhances the processing capabilities of the systems. Particularly, G-TADOC has three innovations. First, a novel fine-grained
thread-level workload scheduling strategy for GPU threads has been developed, which partitions heavily-dependent loads adaptively in
a fine-grained manner. Second, a GPU thread-safe memory pool has been developed to handle inconsistency with low synchronization
overheads. Third, a sequence-support strategy is provided to maintain high GPU parallelism while ensuring sequence information for
lossless compression. Moreover, G-TADOC involves special optimizations for embedded GPUs, such as utilizing the CPU-GPU shared
unified memory. Experiments show that G-TADOC provides 13.2× average speedup compared to the state-of-the-art TADOC.
G-TADOC also improves performance-per-cost by 2.6× and energy efficiency by 32.5× over TADOC.

Index Terms—TADOC, Embedded GPU Systems, Compression, Data Analytics.

F

1 INTRODUCTION

In daily lives, there is an increasing need for light-weight
convenient embedded devices to facilitate data analyt-
ics tasks, and embedded systems, such as Nvidia Jetson
XAVIER NX [1], have integrated GPUs with CPUs on the
same chip, bringing super performance to the edge [2]. We
show a Jetson XAVIER NX platform in Figure 1, which
contains the whole computer system components including
a GPU. Importantly, its length is less than the length of a
pen, and its price is low. However, the current embedded
GPUs are still less powerful and have limited storage space
compared to the discrete GPUs. Fortunately, a recent tech-
nology, text analytics directly on compression (TADOC) [3],
[4], [5], [6] has proven to be a promising technology for
big data analytics. Since TADOC processes compressed data
without decompression, a large amount of space can be
saved. Meanwhile, TADOC reuses both data and interme-
diate computation results, which results in that the same
contents in different parts of original files can be processed
only once, thus saving significant computation time [3],
[4]. Therefore, it is greatly beneficial to apply TADOC on
embedded GPU systems.

• Z. Pan, F. Zhang, Y. Zhou, and X. Du are with the Key Laboratory of
Data Engineering and Knowledge Engineering (MOE), and School of
Information, Renmin University of China, Beijing 100872, China. E-mail:
{panzaifeng,fengzhang,2018202196,duyong}@ruc.edu.cn

• J. Zhai is with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, 100084, China. E-mail: zhaiji-
dong@tsinghua.edu.cn.

• X. Shen is with the Computer Science, North Carolina State University,
Raleigh, NC 27695, US. E-mail: xshen5@ncsu.edu.

• O. Mutlu is with Department of Computer Science, ETH Zurich, Zurich
8092, Switzerland. E-mail: omutlu@ethz.ch.
(Corresponding author: Feng Zhang)

Fig. 1. Nvidia Jetson XAVIER NX. Mechanical 103 mm × 90.5 mm ×
34.66 mm.

Enabling TADOC on embedded GPU systems introduces
three advantages. First, the storage capacity of current em-
bedded GPU systems is quite limited, so processing on
compression can greatly enlarge its capability. For example,
the latest Nvidia Jetson XAVIER NX [1] embedded platform
has only 8GB memory with microSD enabled for storage.
Second, the GPU device is much powerful than the CPU
on embedded systems, and utilizing TADOC on embedded
GPUs can greatly enhance GPU data processing ability to-
wards massive data. For example, the GPU device on Nvidia
Jetson XAVIER NX brings 21 TOPs computing capacity,
which is much higher than its CPU [1]. Third, intelligent
edge solutions require advanced reasoning capabilities to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

solve complex problems, and many advanced data ana-
lytics applications, such as term frequency-inverse document
frequency (TFIDF) [7], have been provided to be suitable with
TADOC. Hence, enabling TADOC on embedded GPUs can
remove the last barrier to apply embedded systems to wide
application scope.

Although enabling TADOC on embedded GPUs brings
significant benefits, developing efficient GPU-enabled TA-
DOC is extremely challenging. First, TADOC transforms
data into rules, which can be further represented as a DAG.
Unfortunately, the amount of dependencies among the rule-
structured DAG of TADOC is extremely large, which is
unfriendly for GPU parallelism. For example, in our exper-
iments, the generated DAG for each file has 450,704 depen-
dent middle-layer nodes on average, which greatly limits
its parallelism. Even worse, a node in the DAG of TADOC
can have multiple parents, which makes this problem more
complicated. Second, a large number of GPU threads writ-
ing to the same result buffer inevitably cause tremendous
write conflicts. A straightforward solution is to lock the
buffer for threads, but such atomicities lose partial perfor-
mance. In the worst case, the parallel performance is lower
than that of the CPU sequential TADOC. Third, maintaining
and utilizing the sequence information on GPUs is another
difficulty: the original TADOC adopts a recursive call to
complete sequential traversal on compressed data, which
is similar to a depth-first search (DFS) and is extremely hard
to solve in parallel. Moreover, special optimizations, such
as utilizing the CPU-GPU shared unified memory towards
embedded GPUs, need to be designed.

There is a large amount of TADOC literature, but un-
fortunately, none of the current TADOC solutions solve the
challenges of enabling TADOC on GPUs mentioned above.
Zhang et al. [4] first proposed TADOC solution but it is
designed in a sequential manner. Although TADOC can
be applied in a distributed environment, TADOC adopts
coarse-grained parallelism and the processing for each com-
pressed unit is still sequential. Zhang et al. next developed
a domain specific language (DSL), called Zwift, to present
TADOC [3], and further realized random accesses on com-
pressed data [5]. However, the parallelism problems still
exist. Zhang et al. [6] then provided a parallel TADOC de-
sign, which provides much better performance than the se-
quential TADOC. However, such parallelism is still coarse-
grained: it only divides the original file into several sub-files,
processes different files separately, and then follows a merge
process, which cannot be utilized by GPUs efficiently, not to
mention the embedded heterogeneous systems.

To solve the aforementioned challenges, we develop
G-TADOC, the first framework that provides GPU-based
text analytics directly on compression, effectively enabling
efficient text analytics on GPUs without decompressing
input data. G-TADOC involves three novel features that
can address the above three challenges. First, to utilize the
GPU parallelism, we develop a fine-grained thread-level
workload scheduling strategy on GPUs, which allocates
thread resources according to the load of different rules
adaptively and uses masks to describe the relations between
rules (Section 4.2). Second, to solve the challenge of write
conflict from multiple threads, we enable G-TADOC to
maintain its own memory pool and design thread-safe data

structures. We use a lock buffer when multiple threads
update the global results simultaneously (Section 4.3). Third,
to support sequence sensitive applications in G-TADOC,
we develop head and tail data structures in each rule to
store the contents at the beginning and end of the rule,
which requires a light-weight DAG traversal (detailed in
Section 4.4). Our preliminary work has been presented in [8],
which only provides a simple design without embedded
GPU optimizations and analysis. Compared to [8], we pro-
vide new insights and optimizations. Moreover, we add new
benchmarks and datasets with extra experiments.

We evaluate G-TADOC on currently the most powerful
embedded GPU platform, Nvidia JETSON AGX XAVIER,
and three discrete GPU platforms, which cover three gen-
erations of Nvidia GPUs (Pascal, Volta, and Turing micro-
architectures). We use six real-world datasets of varying
lengths, structures, and content. Compared to TADOC on
CPUs, G-TADOC achieves 13.2× speedup. In detail, TA-
DOC can be divided into two phases: initialization and DAG
traversal. For the initialization phase, G-TADOC achieves
25.9% time saving, while for the DAG traversal phase, G-
TADOC achieves 78.6% time saving. Moreover, performance
per cost and energy efficiency are also important in data
centers, and G-TADOC achieves 2.6× performance-per-cost
benefits and 32.5× energy efficiency over TADOC.

As far as we know, this is the first work enabling effi-
cient text analytics on heterogeneous platforms, including
embedded GPU platforms and discrete GPU platforms,
without decompression. In summary, we have made the
following contributions in this work.
• We present G-TADOC, which is the first framework

enabling efficient GPU-based text analytics directly on
compressed data.

• We unveil the challenges for developing TADOC on
GPUs and provide a set of solutions to these challenges.

• We exhibit our optimizations of G-TADOC on embedded
GPU platforms, and show the benefits from both power
efficiency and cost efficiency perspectives.

• We evaluate G-TADOC on four GPU platforms, and
demonstrate its significant benefits compared to the
state-of-the-art TADOC.

2 BACKGROUND AND PREMISES

We introduce the background and premises of embedded
GPU systems and TADOC in this section.

2.1 Embedded GPUs
CPU-GPU embedded systems are becoming increasingly
popular. These small but advanced “supercomputers” are
widely used in industry and daily applications, such as
autonomous robotics and edge computing [2]. These embed-
ded GPU systems usually have extremely low power, but
with much higher computing capacity compared to CPUs.
For example, Nvidia Jetson Xavier NX integrates an ARM
CPU with an Nvidia Volta GPU together, delivering 14 TOPs
performance under only 10W power [1].

Difference from discrete GPUs. We show an embedded
GPU and discrete GPU comparison in Figure 2. First, they
have different architectural designs. The heterogeneous em-
bedded systems integrate a CPU and a GPU together. They

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

share the same physical unified memory via the memory
controller fabric without PCIe communication, as shown in
Figure 2 (a), which is different from discrete GPUs shown in
Figure 2 (b). Second, the embedded GPUs have much lower
power than the discrete GPUs, so the embedded systems are
more energy-efficient. Third, the embedded heterogeneous
systems are usually less powerful than the discrete GPUs.
For example, embedded GPUs have fewer computing cores
and lower frequencies than discrete GPUs. The memory and
storage size of embedded systems are also smaller.

CPU GPU

memory controller fabric

DRAM

CPU GPU

CPU DRAM GPU DRAM

(a) Embedded GPU system. (b) Discrete GPU system.

PCIe

Fig. 2. Comparison between embedded and discrete GPU platforms.

Advantages. The embedded GPU systems have the fol-
lowing advantages. First, the embedded GPU systems have
more advanced architecture designs: the GPU and the CPU
share the same memory buffer, so they can have more
fine-grained cooperation without PCIe data transmission.
Second, the embedded GPUs have much lower cost and
power than discrete GPUs, which are power- and cost-
efficient. Third, the embedded systems can have a much
smaller size. Based on these advantages, the embedded GPU
systems can be applied in various scenarios.

Limitation and opportunity. Unfortunately, though em-
bedded GPU systems have the above advantages, their
restricted memory and storage capacities limit their solv-
able problem scale and applicabilities. Fortunately, a recent
promising technology, TADOC, has been proposed that can
perform data processing directly on compression. If we can
compress large data into the memory of embedded systems,
the embedded systems can process a much larger workload,
even larger than its memory and storage size. We next
introduce the concepts and technologies of TADOC.

2.2 Text Analytics Directly on Compression
Text analytics directly on compression (TADOC) has been
proved to be a promising technology that can save both
time and space [3], [4], [5], [6]. In detail, TADOC is a novel
lossless compression technique that enables data analytics
directly on compressed data without decompression. Differ-
ent from deduplication [9], [10], TADOC adopts dictionary
conversion to encode original input data with numbers,
and then uses context-free grammar (CFG) to recursively
represent the numerical transformed data after conversion
into rules. In TADOC, a rule is a symbol substitution pattern
with the form of A→ α, where A is a rule symbol and α is a
sequence consisting of subrule symbols and word symbols.
We can recursively substitute the repeated sequences of
rule and word symbols with a substitution rule symbol to
generate new rules. Repeated pieces of data are transformed

into different rules in CFG, and the data analytics tasks
are then represented as rule interpretations. To leverage re-
dundant information between files, TADOC inserts unique
splitting symbols for file boundaries. Moreover, the CFG can
be represented as a directed acyclic graph (DAG), so the
interpretation of the rules for data analytics can be regarded
as a DAG traversal problem.

Compression illustration. We use an example from [4]
to illustrate how TADOC compresses data into CFG rep-
resentation. Figure 3 (a) shows the original input data,
which consists of two files: file A and file B, and “wi”
represents a unique word. Figure 3 (b) shows the dictionary
conversion, which uses an integer to represent an element.
Note that the rules “Ri” and file splitters “spti” are also
transformed into numerical forms. Figure 3 (c) shows the
TADOC compressed data, which are sequences of numbers.
The TADOC compressed data can be viewed as CFG shown
in Figure 3 (d), which can be further organized as a DAG
shown in Figure 3 (e) for traversals. Accordingly, common
data analytics are then transformed to a graph traversal
problem.

R2:

R1:

R0:

R0 : R1 R1 spt1 R2 w1
R1 : R2 w3 R2 w4
R2 : w1 w2

file A: w1 w2 w3 w1 w2 w4
w1 w2 w3 w1 w2 w4

file B: w1 w2 w1

file A

(a) Original input.

(d) CFG. (e) DAG Representation.

R1 R1 spt1

R2 w3 R2 w4

w1 w2

w1: 0 w2: 1 w3: 2
w4: 3 R0: 4 R1: 5
R2: 6 spt1: 7

(b) Dictionary conversion.

4 : 5 5 7 6 0
5 : 6 2 6 3
6 : 0 1

(c) TADOC compressed data.

R2 w1

file B

R1:

R0:

file0

R1 R1 SPT1

R2 w3 R2 w4

R2 w1

file1

Fig. 3. A compression example with TADOC.

Case study of data analytics. We use word count as
a case study to show how to perform data analytics on
TADOC compressed data, as shown in Figure 4. In Step 1,
R2 transmits its accumulated local word frequencies to its
parents, which are R0 and R1. In Step 2, R1 receives the word
frequencies from R2 and merges these frequencies to R1’s
local frequency table. In Step 3, R1 transmits its accumulated
word frequencies to its parent R0. After R0 receives the word
frequencies from all its children, which are R1 and R2, R0
merges all received word frequencies into R0’s word count
results, which are also the final word counts. Other data
analytics tasks can be conducted similarly [6].

R0: R1 R1 R2 w1

R1: R2 w3 R2 w4

R2: w1 w2

<w1,6>, <w2,5>, <w3,2>, <w4,2>

CFG relation
information propagation

spt1

Step 1

Step 2

Step 3

<w1,1>, <w2,1>

<w3,1>, <w4,1>, <w1,2>, <w2,2>

<w1,1>, <w2,1>

<w1,2>, <w2,2>,
<w3,1>, <w4,1>

<w1,1>,
<w2,1>

Fig. 4. Word count example using TADOC.

3 MOTIVATION OF G-TADOC
In this section, we show the motivation of our work and
discuss the challenges.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

3.1 Why do we need TADOC on embedded GPU sys-
tems?
We discuss the reason of enabling TADOC on embedded
GPU systems in this part, which is also the motivation of
this work.

First, enabling TADOC on embedded heterogeneous sys-
tems is of significant benefit. Data analytics is important in
big data era. Due to the big data characteristics of four V s
(volume, velocity, variety, and veracity) [11], it is necessary
to utilize heterogeneous accelerators to facilitate CPUs for
these various applications. However, as discussed in Sec-
tion 2.1, the capacity of embedded heterogeneous systems
is limited. If we can enable data analytics in embedded
systems, we can greatly enhance the workload scale that
can be handled.

Second, current GPU-based BFS traversal does not ap-
ply, due to the special features of the DAG representation
of TADOC. On one hand, many data analytics tasks re-
quire sequence maintenance of words, where BFS cannot
be used directly [4]. On the other hand, TADOC involves
complicated data processing and complex data structures
during traversal. For example, each rule, which is a node
in DAG, needs to maintain a local word table and a rule
table, and all rules write to the same global buffer, which
generates write conflicts in G-TADOC among GPU threads.
Finally, the DAG traversal in TADOC involves dynamic
data transmission. For example, the traversal can transmit
accumulated word frequencies among rules. Unfortunately,
the amount of data transferred between nodes cannot be
obtained in advance, which has not been involved in BFS
on GPUs.

Third, although we transform data analytics tasks to
graph traversals, existing DAG traversals on GPUs cannot
be used, due to the uniqueness of the DAG representation
of TADOC. The uniqueness of TADOC is that each node
requires complicated text-related intra- and inter-node op-
erations. This uniqueness does not need to be considered in
previous GPU traversal solutions. In detail, within a node, a
dynamic buffer needs to be maintained to receive interme-
diate results from parents and to transmit data to children.
Between different nodes, cross-rule sequence needs to be
considered. Hence, we do not use existing designs.

3.2 Challenges
Enabling efficient TADOC on embedded GPU systems
needs to address the following challenges.

The first challenge is GPU parallelism for TADOC.
Although embedded GPUs have fewer computing cores
compared to discrete GPUs, they still have much more
cores providing massive parallelism compared to CPUs.
For example, the embedded GPU JETSON AGX XAVIER
integrates 512 light-weight Volta GPU cores [2]. The high
performance of embedded GPU systems relies on the high
throughput from thread-level parallelism. Unfortunately, as
presented in [4], there exist massive dependencies among
the DAG, which leads TADOC difficult to be parallel. Ac-
cordingly, TADOC utilizes coarse-grained parallelism that
mainly processes different compressed files in parallel: each
CPU thread handles a separate file [6]. We cannot apply
such coarse-grained parallelism on GPUs because a GPU

supports thousands of threads and it is inefficient to split
the compressed data into that large number of partitions.
Even worse, if we use one GPU thread for one rule, there
is a workload unbalancing problem because the numbers of
elements in different rules vary significantly. GPUs launch
threads at warp level, and the threads within a warp have to
release resources simultaneously. The workload imbalance
problem decreases the parallelism degrees. Additionally,
we cannot simply decide the number of threads for rules,
because of the various rule length.

The second challenge comes from TADOC final result
update conflict of massive GPU threads. The update conflict
is a serious problem when we develop TADOC on GPUs. On
the one hand, when a large number of GPU threads write to
the same result buffer, we have to use atomic operations to
guarantee correctness, which incurs massive conflicts. Note
that the update conflict of multiple threads writing to the
same result buffer is not a serious problem on CPUs because
the number of CPU threads is limited. On the other hand,
the complicated data structures used in TADOC cannot be
applied in GPU environment. For example, TADOC uses
an unordered map data structure for results such as word
counts. We need to develop our own similar data struc-
tures on GPUs with atomicity and consistency considered.
Even worse, the amount of memory required by TADOC is
unknown until runtime. In developing TADOC on GPUs,
the memory sizes of different threads are also various,
which makes the update problem with thread conflicts more
difficult.

The third challenge is sequence maintenance of TADOC
compressed data on GPUs. How to keep the sequence
information on GPUs is also challenging. Sequence main-
tenance is essential for sequence sensitive applications, such
as counting three continuous word sequences. To keep the
sequence information, TADOC originally traverses the DAG
in a DFS order [4], which is hard to be parallel. Worse
still, a word sequence can span several rules and these
rules can be controlled by different GPU threads. Currently,
threads across different GPU blocks have no mechanism
for synchronization. Last but not least, TADOC uses map
data structures to store sequence counts. For these sequence-
based applications, we need to develop special data struc-
tures in GPU memories to store sequences and perform
basic comparisons between threads.

Besides, embedded GPU systems integrate the CPU and
the GPU together with the unified memory. Special opti-
mizations need to be designed. Overall, enabling TADOC
on embedded GPU systems is very rewarding, but full of
challenges.

4 G-TADOC DESIGN

We show our G-TADOC design in this section. G-TADOC
targets GPU systems, and involves optimizations for em-
bedded GPU systems.

4.1 General Design

We show the general design of G-TADOC in Figure 5. The
input includes TADOC compressed data and user-defined
programs, while the output is the required result.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

parallel
execution

enginesequence
support

data
structures

modules

phases

TADOC
compressed data

results

G-TADOC

TADOC
program

graph traversal phaseinitialization phase

data structure
preparation

light-weight scanning

top-down traversal /
bottom-up traversal

result merging

Fig. 5. G-TADOC overview.

Modules. G-TADOC is composed of three modules. The
first module is the parallel execution module, which is
responsible for G-TADOC parallel execution on GPUs. This
module decides how to partition workloads for thread par-
allelism. The second module is the data structure module,
which provides necessary data structures for G-TADOC exe-
cution, including a self-controlled memory pool, thread-safe
data structures, and head and tail structures for sequences.
The third module is the sequence support module, which is
used for applications that are sensitive to sequence orders.
These three modules work together to complete G-TADOC
tasks.

Phases. The execution workflow of G-TADOC can be
divided into two phases. The first phase is the initialization
phase. In this phase, G-TADOC prepares necessary data
structures according to the user program after receiving
the TADOC compressed data and program, and launches
a light-weight scanning to fulfill related values. The second
phase is the graph traversal phase. In this phase, G-TADOC
analyzes different traversal strategies and chooses the most
suitable one based on both data and tasks. Finally, G-
TADOC performs a merging process for final results before
the end of the graph traversal.

Solutions to challenges. G-TADOC can address the
challenges mentioned in Section 3.2. To address the first
GPU parallelism challenge, G-TADOC adopts a thread-
level workload scheduling strategy for GPU threads, which
partitions the DAG in a fine-grained manner for paral-
lelism (Section 4.2). To address the second TADOC update
conflict challenge, we develop a memory pool on GPUs
and maintain necessary data structures so that all threads
manage the same unified memory objects with consistency
guaranteed (Section 4.3). To address the third challenge of
sequence sensitivities on GPUs, G-TADOC scans the DAG
for recording the cross-rule content in a light-weight manner
in the initialization phase. Then, G-TADOC performs a rule-
level processing and a result merging process in the graph
traversal phase (Section 4.4).

4.2 Fine-Grained Thread-Level Execution Engine
We show our G-TADOC parallel execution engine in this
part. In developing our parallel partitioning strategy, we

consider two possible designs, as shown in Figure 6. The
first design is to partition the DAG vertically from the
root: different parts are traversed by different threads, as
shown in Figure 6 (a). This design can leverage the GPU
parallelism, but at the same time, rules can be scanned
by different threads. For example, R2 and R4 are scanned
by both thread0 and thread1. Even worse, when the DAG
is deep and complicated, the problem that massive rules
are repeatedly scanned by different threads can be serious.
Hence, we abandon this design. The second design is fine-
grained thread-level scheduling: we assign a thread for each
node except the root. The root rule usually includes a large
number of elements so we allocate a group of threads based
on the rule length to handle it. To traverse the DAG, each
rule is associated with a mask to indicate whether a rule
is ready to be traversed or not. This design ensures the
dependency for correctness in the DAG traversal and re-
tains great parallelism simultaneously. Therefore, we adopt
this fine-grained design. Moreover, as discussed in [6], the
optimal traversal strategy depends on both input data and
analytics tasks, so we develop both top-down and bottom-
up traversals and use the strategy selector in [6] for such
decisions.

R1 R2 w1 spt1 R2 w2 spt2 R3root … w4 …

…

thread0 thread3

w5 R4R1: R2:

w6 w7R4: w8

w2 R5R3:

w9 w6R5: w8

…

…

w5

thread1 thread2

R1 R2 w1 spt1 R2 w2 spt2 R3root … w4 …

…

thread0 thread3

w5 R4R1: R2:

w6 w7R4: w8

w2 R5R3:

w9 w6R5: w8

…

…

w5

thread1 thread2

thread4 thread5 thread6

thread7 thread8

(a) Workload vertical partitioning design.

(b) Fine-grained thread-level partitioning design.

R4

R4

Fig. 6. Workload partitioning design exploration.

Next, we show our detailed top-down and bottom-up
designs in G-TADOC.

Top-down traversal. We show our top-down traversal
design in this part.

1) General design. The general design of top-down traver-
sal transmits required data, such as file information, from
the root to sub-nodes for processing. Then, G-TADOC gath-
ers local results from different nodes as the final result.
First, in root, different consecutive parts are controlled by
different threads, which can be processed in parallel. Sec-
ond, during traversal, multiple parents can write to the same
local buffer of a rule, which relates to data consistency. To
handle this problem, we develop a self-maintained memory
pool, detailed in Section 4.3. Third, G-TADOC reduces in-
termediate results from rules to the final output in a global
buffer in parallel.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

2) Detailed algorithm. We show our top-down DAG
traversal design in Algorithm 1. The general control is per-
formed on the CPU side by the topDown function, as shown
in Lines 1 to 8, which calls different GPU kernels, including
initTopDownMaskKernel, topDownKernel, and reduceResultK-
ernel.

The initTopDownMaskKernel is executed on GPUs, which
initializes the nodes whose in-edges are from only the root.
In detail, we consider the topology of the rules except the
root, and accordingly, the initial weights of these rules are
their frequencies in the root. Additionally, rule.numInEdge
stores the number of in-edges of each rule, and only the
rules with zero numInEdge can start the DAG traversal
initially. In G-TADOC, we mark the masks of the rules that
can be processed as true.

The topDownKernel is the main body of the top-down
traversal and is executed on GPUs. We set the devStopFlag
to true in Line 4. If the devStopFlag is still true after the
topDownKernel execution, which means that the DAG has no
update and has been fully traversed, then G-TADOC stops
traversal. In topDownKernel, for different applications, only
the for-loop from Lines 15 to 17 is different. Here, we take
word count as an example. For a given rule, it first transmits
its accumulated weights to all its subrules (Line 17). If the
number of current in-edges subRule.curInEdge is equal to a
subrule’s full number of in-edges subRule.numInEdge, then
we mark the subrule’s mask to true, indicating that the
subrule is ready to be traversed in the next round (Line 20).
Note that when any masks are changed, stopFlag shall be set
to false. Moreover, rule.mask should be set to false in Line 22
so that the rule will not be involved in the next round.

The reduceResultKernel merges the word frequencies from
all rules multiplied by their corresponding accumulated rule
weights on GPUs.

Algorithm 1 Top-Down Traversal
1: function topDown(rules) . Executed by host; use word count as an

example
2: initTopDownMaskKernel(rules) with at least rules.size

threads
3: do . Repeated top-down traverse until all rules’ weight

generated
4: cudaMemSet devStopF lag ← true
5: topDownKernel(rules, devStopF lag) with at least

rules.size threads
6: cudaMemCpy devStopF lag to stopF lag
7: while stopF lag is false
8: reduceResultKernel(rules) with at least rules.size threads .

Reduce results from all rules

9: function topDownKernel(rules, devStopF lag) . GPU kernel
10: if tid not in 1 to rules.size− 1 then
11: return
12: rule← rules[tid]
13: if rule.mask is false then
14: return
15: for each subRuleId, subRuleFreq in rule.subRules do
16: subRule← rules[subRuleId]
17: atomicAdd(subRule.weight, subRuleFreq ∗ rule.weight)
18: atomicAdd(subRule.curInEdge, 1)
19: if subRule.curInEdge is full then
20: subRule.mask ← true . Sub-rule then can be traversed
21: devStopF lag ← false

22: rule.mask ← false

3) Theoretical analysis. Algorithm 1 can be divided into

three stages. The first stage is mask initialization (Line 2), in
which each thread checks the corresponding rule’s number
of in-edges and then sets its mask. Assuming sufficient
parallel resources, the complexity is O(1). The second stage
is top-down traversal (Lines 3 to 7). Assuming that the DAG
has k layers, the number of loops is not greater than k. Then
each thread in topDownKernel traverses the corresponding
rule’s sub-rules. Suppose in the ith loop, the maximum
number of sub-rules of a rule is ei,max, then the total
complexity of this stage is O(

∑k
i=1 ei,max), which can be

represented asO(kēmax). The third stage is to reduce results
(Line 8). Each thread needs to merge the corresponding
rule’s local words from the local table to the global table,
so the complexity is O(wmax), where wmax is the maximum
number of local words among all rules. Therefore, the over-
all complexity of Algorithm 1 is O(kēmax + wmax).

Bottom-up traversal. We show our bottom-up traversal
design in this part.

1) General design. The bottom-up traversal transmits re-
quired data, such as local word counts, from leaves to
upper-level nodes. After transmission, the root and its di-
rectly connected nodes (called 2nd-layer nodes) store the
gathered result. Note that we do not accumulate the results
to the root because the root contains file information. In de-
tail, first, each leaf transmits the required data from its local
tables to its parents. Second, during traversal, each node
accumulates the transmitted data from children and then
transmits the accumulated results to its parents. Note that
data consistency needs to be guaranteed since different rules
are controlled by different threads. Third, after traversal, G-
TADOC analyzes the local buffers in the root and 2nd-layer
nodes in parallel to generate the final results.

2) Detailed algorithm. We show our bottom-up DAG
traversal design in Algorithm 2. The general control is per-
formed by the function bottomUp from the CPU side, which
calls different GPU kernels. Different from Algorithm 1,
the bottom-up design in Algorithm 2 first generates the
pointers from children to parents (Lines 2 to 3), initializes
masks (Line 4), and generates the local tables’ bound in
a light-weight bottom-up manner (Lines 5 to 9), so that
the local tables in rules can be allocated (Line 10). Then, it
initializes masks again (Line 11) and traverses the graph in
a comprehensive bottom-up direction with a result merging
process (Lines 12 to 17).

The initBottomUpMaskKernel set the rule masks. The
masks of leaves are set to true so that they can be traversed
initially.

The genLocTblBoundKernel is used to calculate the mem-
ory size limit for local tables, and is called by the bottomUp
function repeatedly. Its kernel execution is similar to that
of topDownKernel in Algorithm 1, except the use of out-
edge rather than in-edge during traversal. When a rule
is traversed, G-TADOC sums the upper limits of its local
words and all its children’s local tables as the amount of
space that should be allocated. Then, the rule increases all
its parents’ out-edges. When a parent’s number of current
out-edges is equal to its number of subrules, G-TADOC
sets its mask to true for the next-iteration execution. After
calculating the memory limit of each node, we allocate the
corresponding buffer for each rule in rules.locTbl (Line 10).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

The genLocTblKernel is used for DAG traversal with the
allocated memory space from the bottomUp function. Its
traversal order is controlled by the traversed out-edges,
which is the same as genLocTblBoundKernel. However, the
kernel’s computation task is much heavier. Here, we use the
word count example for illustration. When a rule is traversed,
it first reduces its local word frequencies, and then merges
all its subrules’ local word frequencies into its own local
table.

The reduceResultKernel merges the word frequencies from
the root and its children where the root is directly con-
nected (called level-2 nodes in [4]) on GPUs. In detail, G-
TADOC merges 1) the word frequencies in the root, and
2) the frequencies in the local tables of the root’s direct
children multiplied by their corresponding rule frequencies
in the root. This is different from the reduceResultKernel in
Algorithm 1.

Algorithm 2 Bottom-Up Traversal
1: function bottomUp(rules) . word count
2: allocate device memory to rules.parentIds
3: genRuleParentsKernel(rules) with at least rules.size threads

4: initBottomUpMaskKernel(rules) with at least rules.size
threads

5: do
6: cudaMemSet devStopF lag ← true
7: genLocTblBoundKernel(rules, devStopF lag) with at least

rules.size threads
8: cudaMemCpy devStopF lag to stopF lag
9: while stopF lag is false

10: allocate device memory to rules.locTbl

11: initBottomUpMaskKernel(rules) with at least rules.size
threads

12: do
13: cudaMemSet devStopF lag ← true
14: genLocTblKernel(rules, devStopF lag) with at least

rules.size threads
15: cudaMemCpy devStopF lag to stopF lag
16: while stopF lag is false
17: reduceResultKernel(rules) with at least root.size threads

3) Complexity analysis. Different from Algorithm 1, Algo-
rithm 2 consists of five stages. The first stage is to generate
the parents of rules (Lines 2 to 3). Each thread in genRule-
ParentsKernel stores the corresponding rule’s ID in all its
sub-rules’ parent table. The complexity is O(emax), where
emax is the maximum number of sub-rules of all rules. The
second stage is mask initialization (Line 4 and 11). Similar to
the mask initialization in Algorithm 1, the complexity is also
O(1). The third stage is to generate rules’ local table bound
(Lines 5 to 9). Each thread in genLocTblBoundKernel traverses
the corresponding rule’s sub-rules and parents. Suppose in
the ith loop, the maximum numbers of sub-rules and par-
ents of these rules are ei,max and pi,max respectively. Then,
the complexity is O(

∑k
i=1(ei,max + pi,max)) = O(k(ēmax +

p̄max)), where k is the number of layers in the DAG. The
fourth stage is to generate rules’ local table (Lines 5 to 9). Be-
sides traversing corresponding rule’s sub-rules and parents,
each thread in genLocTblKernel also merges all sub-rules’
local tables and its own words. For a given rule i, suppose
its local table size is ti and its number of words iswi, then its
computation load is wi +

∑
j∈i.subRules tj . The complexity

of this stage is O(
∑k

i=1 Ci,max), which is O(kC̄max). Ci,max

is the maximum computation load among rules in the ith

loop. The fifth stage is to reduce results (Line 8). This stage
scans the root and merges all level-2 nodes. In detail, each
thread is responsible for one level-2 node, so the complexity
is O(tlv2,max), where tlv2,max is the maximum size of level-
2 nodes’ local tables. Therefore, the overall complexity of
Algorithm 2 is O(k(ēmax + p̄max + C̄max) + tlv2,max).

Parameter selection. G-TADOC involves a few param-
eters to adjust, such as the CUDA block dimension. The
current solution is to extract a sample set of input and then
use a greedy strategy to set each parameter in turns. If the
input is unavailable until runtime, then the parameters are
set according to our training set (a small extracted dataset
from Wikipedia [12]).

4.3 G-TADOC Data Structures
The data structures in G-TADOC include a self-maintained
memory pool, thread-safe structures, and sequence support.

G-TADOC maintained memory pool. As discussed in
Section 4.2, we need to provide each thread a separate
memory space during DAG traversal. Because 1) the re-
quired memory size is unknown until runtime, and 2)
allocating memory dynamically for all threads is inefficient,
we develop a global memory pool to manage the GPU
memory by G-TADOC itself. First, each rule calculates its
own required memory size for necessary data structures.
Second, with data transmission in the initialization phase
in Figure 3, each rule transmits its memory requirement to
its parents in a bottom-up traversal, or to its children in a
top-down traversal. This memory requirement transmission
process can be recursive. Third, after the whole range trans-
mission in the initialization phase, each rule determines its
maximum memory requirement and we can allocate related
resources of different rules from the memory pool.

Thread-safe data structures. After we introduce the
memory pool in G-TADOC, we next describe the thread-
safe data structures used in the memory pool for GPU
threads. The most important data structure in TADOC is
the hash structure [4], which can be used to store the results
both locally and globally. Hence, we use the hash structure
for illustration in G-TADOC thread-safe design, as shown
in Figure 7. The original state of the hash table is shown
in Figure 7 (a). The lock buffer is for locking entries (1
means locked, and 0 means unlocked). The entry buffer
is for hashing (default -1). The key and value buffers are
for the key-value pairs. The next buffer is for the next
entry if multiple key-value pairs are mapped into the same
entry. Figure 7 (b) shows the state after inserting <126,1>,
assuming the key-value pair is hashed to 1. Because there
is no conflict in this insertion, the related value in the next
buffer is -1. Figure 7 (c) shows the hash table state after
inserting <163,1>, assuming the key-value pair is hashed
to 3. Accordingly, G-TADOC just stores the key-value pair
<163,1> after the first <126,1>. Figure 7 (d) shows a hash
conflict situation: the hash table state after inserting <78,1>,
assuming the key-value pair is hashed to 1. Because <126,1>
has already been inserted into the first entry, we update its
“next” buffer pointing to a new place for the newly inserted
<78,1>. Note that the lock buffer is used only when all

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

threads writing to the same buffer location. Moreover, if the
hash table is private and owned by one thread, we do not
need to create the locks.

Keys

0 0 0 0 0Values

Next

-1 -1 -1 -1 -1Entries

0 0 0 0 0Locks

-1 0 -1 -1 -1Entries

126Keys

1 0 0 0 0Values

-1Next

0 1 0 0 0Locks

(a) Original hash table. (b) Add key = 126 (suppose
hash to 1), and value = 1.

-1 0 -1 1 -1Entries

126 163Keys

1 1 0 0 0Values

-1 -1Next

-1 0 -1 1 -1Entries

126 163 78Keys

1 1 1 0 0Values

2 -1 -1Next

0 0 0 1 0Locks 0 1 0 0 0Locks

(c) Add key = 163 (suppose
hash to 3), and value = 1.

(d) Add key = 78 (suppose
hash to 1), and value = 1.

Fig. 7. Illustration for thread-safe hash tables.

Head and tail structures for sequence support. The
head and tail structures are used to support sequence sen-
sitive applications, such as sequence count [4]. Because G-
TADOC traverses the DAG in parallel, rules can involve
cross-rule sequence (a word sequence spanning multiple
nodes in the DAG). We design head and tail data structures
for each rule to store the content of the beginning and end
of the rule, which are provided to the parents. We show
an example in Figure 8. In the root, the first sequence,
<w1,w2,w3>, is a sequence that does not span across rules.
However, for the next three-word sequence, <w2,w3,w4>, it
spans across the root and R1. For this sequence, we store
the partial content of <w4,w5> in the head buffer of R1,
so that this cross-rule sequence can be processed by the
parent, which is the root. Similarly, we store <w6,w7> in
the tail buffer of R1 so that R1’s parent can quickly process
the sequences containing the words in R1’s tail buffer. Note
that the first few elements and the last few elements in the
subrule can also be a rule. For example, in Figure 6, the
first element of R2 is also a rule, so the sequence from the
root can span more than two rules, which is complicated. In
our design, each rule can be handled by different threads.
If we can provide the head and tail buffers of all rules, we
can avoid multi-rule scanning by looking into only the head
and tail buffers of different subrules directly. In summary,
the parents are responsible to process cross-rule sequences,
and the problem can be solved by scanning the head and
tail buffers of the direct children. More details are presented
in Section 4.4.

R1 R2 w1 spt1 R2 w2 spt2 R3

root

… w4 …

…

thread0 thread3

w5 R4

R1:

w1R2:

w6 w7R4: w8

w2 R5R3:

w9 w6R5: w8

…

…

w5

thread1 thread2

w1 w2 w3 R1 w8 w9 w10 ……

w4 w5 …… …
head tail

w6 w7

Fig. 8. Head and tail data structures for sequences.

4.4 Sequence Support in G-TADOC

In this part, we discuss the sequence support in G-TADOC
for sequence sensitive applications. The sequence support in
TADOC [4] is developed by function recursive calls, which
is inefficient and hard to be parallel on GPUs. To improve
the sequence support of TADOC and parallelize it on GPUs,
we have the following insights. First, to fully parallelize the
rule processing, each rule needs to include the head and
tail buffers mentioned in Section 4.2 to remove the sequence
dependency across rules. Second, a first-round initialization
phase is required to fulfill the head and tail buffers for all
rules. Third, the original recursive design in TADOC [4]
is inefficient and thus shall be abandoned. Hence, a more
efficient parallel graph traversal needs to be developed.

Based on the analysis, we develop a two-phase sequence
support design for sequence sensitive applications.

Initialization phase. The first initialization phase is to
prepare the head and tail buffers for each rule with a
light-weight scanning. Besides, the upper limit of memory
space for the raw local sequence table in each rule is also
calculated in this light-weight scanning.

The raw local sequence table is used to fit the top-
down/bottom-up algorithms. The raw local sequence table
only contains the word sequences that satisfy one of the
following conditions: 1) the full word sequence resides
within a rule, and 2) partial word sequence resides in a rule,
while the remaining part residing in a subrule. In Figure 9,
we use two rules with length l = 3 as an example for the
construction of the raw local sequence table. For subrule
R2, we only need to consider its head and tail, and the
word sequences are <w1,w2,w3>, <w2,w3,w4>, <w5,w6,w7>,
<w6,w7,w8>, and <w7,w8,w9>, with their beginning words
labeled with triangles in Figure 9. Hence, when computing
the upper limit in Equation 1, we consider that the sub-rule
contains l−1 words that can be used as the beginning words
of the sequences, excluding the l − 1 words at the end.

R1:

R2:

w1 w2 R2 w7 w8 w9

w3 w4 …

head tail

w5 w6

Fig. 9. Construction of a raw local sequence table. The beginning words
of the sequences are labelled with triangles.

Hence, the memory upper limit of the raw local sequence
table can be calculated by Equation 1, where wordNum
denotes the number of the words, l denotes the length of
sequence, and subRuleNum denotes the number of subrules.

upperLimit = wordNum+ (l − 1)× subRuleNum− (l − 1)
(1)

The detailed process to generate the head and tail buffers
of each rule is shown in Figure 10. The CPU side uses a do-
while-loop to continuously check whether all the head and
tail buffers have been fulfilled. To generate the head buffers,
G-TADOC traverses the rules, and puts a given number
of continuous words at the beginning of the rule in the
head buffer. Within such a process, if G-TADOC encounters

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

a subrule, G-TADOC first checks the related mask. If the
mask is set, which implies that the subrule’s head buffer is
ready, then G-TADOC can put the content from the subrule’s
head buffer to the current rule’s head buffer; otherwise,
the calculation fails and needs to be conducted in the next
round. The generation of the tail buffers is similar to the
generation of the head buffers.

CPU

stop_flag = true

generate head/tail

wait synchronization

stop_flag

GPU

mask

calculate
head/tail

mask = true stop_flag = false

return
true

…

false

succeed

sub_rule.mask == false

fail

threads

true

Fig. 10. Initialization for head and tail buffers.

Graph traversal phase. The second phase of sequence
support is to traverse the graph and reduce the accumulated
local results of each node. We use sequence count [4] as an ex-
ample, which uses the hash tables described in Figure 7. For
sequence support, we need to reduce the intermediate results
in the local tables from the rules, as shown in Figure 11.
Similar to the first phase shown in Figure 10, the CPU part
uses a do-while-loop to control the reduction process. We
use parallel hash tables to merge these results, as discussed
in Section 4.3. First, we distribute each key-value pair a mask,
and each entry a lock. Second, each thread is responsible
for one key-value pair. Third, each thread needs to justify
whether it is necessary to insert a key-value pair. If not, G-
TADOC returns directly; otherwise, G-TADOC obtains the
entry based on hash functions, and then verifies if the same
key already exists on this entry. If the key exists, G-TADOC
uses atomic additions directly, and then sets the mask to
true; otherwise, G-TADOC tries to obtain the lock of the
entry. If the lock is occupied by other threads, G-TADOC
sets the stop flag to false and returns directly; if G-TADOC
obtains the lock, G-TADOC needs to verify whether the
same key coexists. If the same key coexists, G-TADOC uses
atomic additions to avoid this issue; otherwise, G-TADOC
obtains a new node and sets the entry accordingly. Finally,
G-TADOC unlocks the table, sets the mask to true, and
returns. Note that the CPU part continuously launches this
process until the stop flag is set to true.

5 EMBEDDED GPU OPTIMIZATION

In this section, we show our explorations and optimizations,
especially for embedded GPU systems.

��

���

����
���� ������

��
���

���

����

����������� ����
���� �������

������

!

�����

���

����

����

���������������������

�������

��

���

�������������	

���

�������

�� �

���
������
�

��������������	 ��������������������

����
����

�������������� �����

Fig. 11. Reduction process in graph traversal with sequence support.

5.1 Advantages over Discrete GPUs

We first compare the embedded GPU systems with discrete
GPUs to highlight its advantages, and then show our opti-
mization.

Detailed comparison. We show a detailed comparison
of our embedded GPU system, Jetson AGX Xavier, and
three discrete GPU systems, GTX 1080, GTX 2080Ti, and
V100, in Table 1. First, the embedded GPU system exhibits
high performance-per-cost potentials. The price of the whole
embedded system is only 19.2% of the single discrete GPU
on average. Second, the power of the embedded GPU
system is much lower than that of the discrete GPU. In
today’s increasingly serious energy consumption situation,
low-power devices are a good choice. Third, although the
performance and bandwidth of embedded GPU systems are
lower than those of the discrete systems, the latency has
been proved to be shorter in certain circumstances with the
help of unified memory [13], [14].

TABLE 1
Embedded GPU systems vs. discrete GPU systems.

Integrated Architectures Discrete Architectures
Architecture Jetson AGX Xavier GTX 1080 RTX 2080 Ti V100

cores 512+8 2560 4352 5120
TFLOPS 11 (FP16) 8.873 13.45 14

bandwidth (GB/s) 136.5 320 616 900
price ($) 699 699 1199 8999
TDP (W) 30 180 260 250

The number of cores for the embedded platform includes eight CPU cores. For
the discrete GPU platform, we only show the GPU device.

Unified memory. As discussed in Section 2.1, unified
memory is a distinct feature between embedded GPU sys-
tems and discrete GPUs. Unified memory is a single address
space accessible for both CPU and GPU in the embedded
system [15], [16]. With the further demand paging tech-
nology from Pascal and later architectures, we can allocate
unified memory objects beyond GPU memory limits. Uni-
fied memory is operated by a page migration engine: faults
on non-resident memory accesses can cause the missing
unified memory objects to be reallocated and migrated from
other space in the system [15]. However, on discrete GPUs,
memory migration between CPU and GPU can incur severe
performance overhead. Fortunately, the integrated design
on embedded systems solves this problem: both CPU and

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

GPU access the same memory, without extra performance
cost on PCIe transmission.

Unified memory utilization. G-TADOC utilizes the uni-
fied memory on embedded GPU systems. For example, on
our Jetson platform, CPU and GPU share the same memory,
which means that after G-TADOC allocating unified mem-
ory space, both CPU and GPU can access the shared mem-
ory objects directly.The detailed process is as follows. First,
G-TADOC allocates a unified memory buffer by using the
CUDA API cudaMallocManaged(). Second, G-TADOC loads
the compressed data, such as TADOC rules, into the unified
memory. Third, G-TADOC processes the compressed data
according to the user defined program without decompres-
sion. In the whole process of embedded GPU systems, G-
TADOC avoids PCIe memory copy of discrete GPU systems.

5.2 Large Datasets

In big data era, the large input data can exceed the GPU
memory, including the embedded GPU platforms. Although
the unified memory has been utilized and TADOC alleviates
this contradiction to some extent, we still need to develop
effective design for processing large datasets that cannot be
stored in memory after compression.

Basic idea. The general idea is that G-TADOC partitions
data to different parts stored on disk, and processes different
parts sequentially. Then, G-TADOC merges the results to
generate final output.

General design. The process of handling large datasets
consists of three steps. The first step is to transform the
dataset into multiple individual DAGs, rather than a single
one. Although this process incurs space cost due to the
underutilized redundancy between different DAGs, this
design is significantly beneficial for processing large data
with limited memory. Second, G-TADOC processes different
parts of the input data in turn, keeping the intermediate re-
sults. In detail, G-TADOC processes one DAG in memory in
one iteration, and frees the memory object before processing
the next DAG. Third, G-TADOC merges the intermediate
results to generate the final output.

Detailed design. In detail, the process for handling large
datasets involves two optimizations. First, the final output
can exceed the memory space. For large result, if the results
obtained from separate files are unrelated, such as term
vector, we can store the results on disk in one iteration
to avoid memory overflow. Second, for large intermediate
results, we store them on disk and then perform a map-
reduce process [17] to obtain the final result. For example,
for ranked inverted index, when processing small datasets, G-
TADOC uses a global hash table in memory to store word
sequences’ corresponding files and counts. In contrast, when
handling large datasets, as Figure 12 shows, G-TADOC
stores the items with the same hash value into one file on
disk during an iteration.

5.3 Other Exploration

In this part, we show our other explorations, including
workload balancing, shared memory, and CPU utilization
on embedded systems.

word sequence 1 file 1 count 1

…

item 1

item 2

item n

…

word sequence 2 file 2 count 2

word sequence m file m count m

items mapped to the same value intermediate file

memory disk

Fig. 12. Mapping items to files according to their hashed keys.

Workload balancing. One of the potential problems of
our top-down and bottom-up G-TADOC design is workload
imbalance. In each iteration of the do-while loop, we assign
each rule a thread, and use a mask to check whether it
should be executed or not. The workload for each thread
can be different. For example, if a rule has a large number
of subrules, this rule needs to transmit more times in a top-
down traversal. For this problem, we consider using more
threads for long rules.

Shared memory utilization. Shared memory are faster
than the global memory, which should be utilized. In our de-
sign, when handling large datasets, we only assign threads
to rules that should be processed during iteration. To obtain
the rules in the next iteration, we consider storing the
subrules that are active in the next iteration in the shared
memory first, and then merge the subrule buffer to the
global memory after block-level synchronization [15].

CPU utilization. On the embedded platform, both CPU
and GPU share the same unified memory, so they can have
more fine-grained cooperation, which means that operations
that are not suitable for the GPU part can be ported to
the CPU for execution. In our design, we use the CPU to
check whether the loop should be stopped, since this process
cannot be parallelized. Additionally, the data stored on disk
can be loaded into memory by the CPU for GPU processing,
without PCIe overhead.

6 IMPLEMENTATION

We integrate our G-TADOC into the CompressDirect
(CD) [4] library, which is an implementation of TADOC. G-
TADOC in CD includes two parts: 1) the CPU part that is
used to input data and program, and to handle the GPU
module, and 2) the GPU part that is used for GPU-based
TADOC acceleration. We use the same interfaces as TADOC
in CD, including word count, sort, inverted index, term vector,
sequence count, and ranked inverted index, so users do not need
to change any code in this GPU support. Moreover, we have
integrated the optimizations for embedded GPU systems.

7 EVALUATION

We measure the performance of G-TADOC and compare it
with TADOC [4] for evaluation in this section.

7.1 Experimental Setup

Methodology. We compare our method with the baseline,
TADOC [4]. TADOC is the state-of-the-art data analytics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 2
Platform configuration.

Platform Jetson AGX Xavier Pascal Volta Turing 10-node cluster
GPU Volta GPU GTX 1080 V100 RTX 2080 Ti NULL

GPU Memory LPDDR4x GDDR5X HBM2 GDDR6 DDR3
GPU TFLOPS 11 (FP16) 8.873 13.45 14 NULL

CPU Carmel ARM v8.2 i7-7700K E5-2670 i9-9900K E5-2676v3
CPU TFLOPS 0.029 0.115 0.238 0.256 0.230

OS Ubuntu 18.04.4 Ubuntu 16.04.4 Ubuntu 16.04.4 Ubuntu 18.04.5 Ubuntu 16.04.1
Compiler CUDA 10.2 CUDA 8 CUDA 10.1 CUDA 11.0 GCC 5.4.0

0.1

1

10

100

1000

A B C D E F

s
p

e
e

d
u

p

wordCount sort invertedIndex termVector

(a) Pascal (GeForce GTX 1080).

1

10

100

1000

10000

A B C D

s
p

e
e

d
u

p

invertedIndex termVector

0.1

1

10

100

1000

10000

A B C D E F

s
p

e
e

d
u

p

sequenceCount rankedInvertedIndex

(b) Volta (Tesla V100).

1

10

100

1000

A B C D

s
p

e
e

d
u

p

sequenceCount rankedInvertedIndex

0.1

1

10

100

1000

A B C D E F

s
p

e
e

d
u

p

sequenceCount

(c) Turing (GeForce RTX 2080 Ti).

0.1

1

10

100

A B C D E F

s
p

e
e

d
u

p
invertedIndex

(d) Jetson AGX Xavier.

Fig. 13. Performance speedups.

directly on compression, denoted as “TADOC”. Our method
that enables TADOC on GPUs is denoted as “G-TADOC”. In
our evaluation, we measure TADOC [4] performance and G-
TADOC performance for comparison. Moreover, we assume
that small datasets can be stored and processed in memory
directly and large datasets are stored on disk.

Platforms. Four GPU platforms, including an embedded
GPU platform Jetson AGX Xavier and three discrete GPU
platforms, and a 10-node Amazon EC2 cluster are used
in our evaluation, as shown in Table 2. We evaluate G-
TADOC on three generations of Nvidia GPUs (Pascal, Volta,
and Turing micro-architectures), which are used to prove
the adaptability of G-TADOC. Since GPU architectures are
constantly changing, if we can achieve high performance on
all these platforms, then it is very likely that G-TADOC can
achieve promising results for future GPU products. The 10-
node cluster is a Spark cluster on Amazon EC2 [18] used to
evaluate TADOC against large datasets.

Datasets. The datasets used in our evaluation are shown
in Table 3, which include various real-world workloads.
These datasets are widely used in previous research [3],
[4], [5], [6], [8]. Dataset A is NSF Research Award Abstracts

(NSFRAA) downloaded from UCI Machine Learning Repos-
itory [19], and is composed of a large number of small files.
Dataset B is a collection of four web documents downloaded
from Wikipedia [12]. To increase the diversity of test data,
dataset C is COVID-19 data from Yelp [20], and dataset D
is a collection of DBLP web documents [21]. Datasets E and
F are large Wikipedia datasets [12], which are evaluated on
the 10-node cluster.

TABLE 3
Datasets (“size”: original uncompressed size).

Dataset Size File # Rule # Vocabulary Size
A 580MB 134,631 2,771,880 1,864,902
B 2.1GB 4 2,095,573 6,370,437
C 62MB 1 36,882 240,552
D 2.9GB 1 8,821,630 23,959,913
E 50GB 109 57,394,616 99,239,057
F 150GB 309 160,891,324 102,552,660

7.2 Performance
In this part, we measure the speedups of G-TADOC over
TADOC and show their time breakdowns.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Overall speedups. We show the speedups that G-
TADOC achieves over TADOC [4] in six datasets in Fig-
ure 13. In detail, Figure 13 (a) shows the speedups on Pascal
platform, Figure 13 (b) shows the speedups on Volta plat-
form, Figure 13 (c) shows the speedups on Turing platform,
and Figure 13 (d) shows the speedups on the embedded
GPU platform. We have the following observations.

First, G-TADOC achieves significant performance
speedups over TADOC in all cases. On average, G-TADOC
achieves 13.2× speedup over TADOC. The reason is that the
GPU device for G-TADOC provides much higher comput-
ing power and bandwidth than the CPU device for TADOC.
Moreover, TADOC uses only serial programs to process
small datasets. The performance speedups achieved by G-
TADOC further prove the effectiveness of our solutions to
handle the dependencies in our parallel design for GPUs.

Second, the performance benefit of G-TADOC on the
embedded GPU platform is lower than that on the discrete
platforms. The reason is that the hardware configuration of
the embedded platform is closer to the CPU host part of
the discrete platforms. For example, the memory used on
the embedded GPU platform is DDR4, while the discrete
GPUs use more advanced types of memory, such as DDR6
and HBM2. Moreover, the embedded GPU has much fewer
GPU cores, so it has relatively low computing capacity.

Third, the speedups of G-TADOC over TADOC on single
nodes for processing small datasets are higher than the
speedups of G-TADOC over TADOC on clusters for pro-
cessing large datasets. The average speedup of G-TADOC
over TADOC on a single node is 32.5×, while the average
speedup of G-TADOC over TADOC on the ten-node cluster
is 2.2×. The reason is that when processing large datasets,
we need to consider the large IO time as well. Moreover,
TADOC adopts coarse-grained parallelism in distributed
environments to improve the data processing efficiency.
However, because of the high performance of GPUs and
our fine-grained parallelism, G-TADOC still achieves clear
performance advantages.

Fourth, the speedups G-TADOC achieves for sequence
count and ranked inverted index are much higher than the
speedups of the other applications in most cases. In detail,
the average speedups of sequence count and ranked inverted
index are 116.9× and 145.8× on the small datasets, which
are much higher than the full range average speedup. The
reason is that sequence count and ranked inverted index of
TADOC in [4] is of low performance: as described in [4], the
performance behaviors of sequence count and ranked inverted
index of TADOC are close to those of the original implemen-
tations on uncompressed data without compression. As to
G-TADOC, sequence count and ranked inverted index reuse the
partial results of duplicate data and execute in parallel on
GPUs.

7.3 Optimization Analysis
We analyze G-TADOC acceleration in different phases and
the traversal strategies on GPUs in this part.

Speedups in different phases. To analyze the perfor-
mance benefits of G-TADOC in different phases, we show
the separate speedups for different phases on Jetson AGX
Xavier over the CPU in Figure 14. We do not show the

results for the large datasets because the baseline is con-
ducted on the Spark cluster, which involves IO interactions
that cannot be simply divided into the two phases. We
have the following findings. First, G-TADOC achieves clear
performance benefits in both phases on the embedded GPU
platform. In the first phase, the average speedup is 1.4×, and
in the second phase, the average speedup is 4.7×. Second,
the performance speedups in different phases have various
behavior. For example, for sequence count and ranked inverted
index, their performance benefits mainly come from the
second phase. Third, compared to [8], the speedup on the
embedded GPU platform is limited. The reason relates to its
architecture design. As shown in Table 2, Jetson AGX Xavier
uses DDR4 memory, which is much slower than those of
the other discrete GPU platforms. Moreover, the embedded
GPU is also less powerful than the discrete GPUs.

0.1

1

10

100

A B C D
s
p

e
e

d
u

p

wordCount sort

termVector sequenceCount

(a) Phase 1: initialization.

0.1

1

10

100

A B

s
p

e
e

d
u

p

wordCount

termVector

0.1

1

10

100

A B C D

s
p

e
e

d
u

p

invertedIndex

rankedInvertedIndex

(b) Phase 2: traversal.

Fig. 14. Separate speedups for different phases on Jetson AGX Xavier.

Top-down vs. bottom-up traversals. We develop top-
down and bottom-up traversals in G-TADOC, but the op-
timal traversal strategy for each application can be input
dependent. For example, for term vector in dataset A, the top-
down traversal takes 14.04 seconds on the Pascal platform,
but the bottom-up traversal takes only 1.56 seconds. In
contrast, for term vector in dataset B, the bottom-up traversal
takes 0.43 seconds, but the top-down traversal takes only
0.11 seconds. In detail, dataset B involves only four files. If
we traverse the DAG in a top-down strategy, we only need
to maintain a small buffer of 16 bytes in each rule indicating
its file information, and the transmission for file information
in DAG traversal is also marginal. In contrast, for dataset A,
which involves a large number of small files, the top-down
traversal with file information would be time-consuming
and drags down the overall performance. Therefore, we
should select the bottom-up traversal strategy in dataset A,
and top-down strategy in dataset B. We apply the TADOC
adaptive traversal strategy selector on GPUs, as discussed
in Section 4.2, which can help select the optimal traversal
strategy.

7.4 Detailed Analysis

We further explore the hardware metrics of G-TADOC for
detailed performance analysis. Moreover, we analyze the
benefits of G-TADOC from the performance-per-power and
performance-per-cost perspectives.

Performance profiling. We use the Nvidia performance
analysis tool, nvprof, to analyze the DRAM throughput and
achieved occupancy of G-TADOC on the embedded GPU and
Pascal platforms, as shown in Figure 15. DRAM throughput

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

represents the sum of read and write throughputs of GPU
memory, while achieved occupancy represents the average
active warp ratio. The embedded GPU platform does not
provide DRAM hardware counters, so we only show the
DRAM throughput on GTX 1080 in Figure 15 (a). Figure 15
shows that most applications exhibit good metrics, and the
embedded GPU has been better utilized than the discrete
GPUs. For inverted index and term vector in dataset A, be-
cause of the large number of small files, G-TADOC utilizes
a bottom-up traversal strategy. However, there still exist
tremendous dependencies in DAG traversal, and hence they
have relatively low performance metrics. For dataset C, due
to its small input size, the GPU DARAM cannot be fully
utilized. However, even in this case, G-TADOC still achieves
clear performance benefits.

Energy efficiency. Power is an important consideration
in big data management systems. We explore the power ben-
efits of G-TADOC by analyzing the performance-per-power
ratio, which is defined as the performance per power of G-
TADOC divided by the performance per power of TADOC.
We show the performance-per-power ratio of the embedded
GPU platform on the large datasets in Figure 16 (a) for
illustration. The average performance-per-power ratio is
32.5, which is significant and shows high energy efficiency
benefits of G-TADOC. The reason is that the G-TADOC
performance on GPU is much higher than the TADOC
performance on CPU and thus G-TADOC has much lower
execution time, though the GPU has higher power than the
CPU.

Cost effectiveness. Price is also an important fac-
tor in parallel and distributed systems. We analyze the
performance-per-cost ratio to show the benefits of G-
TADOC from the price perspective. The performance-per-
cost ratio is defined as the performance-per-device price of
G-TADOC divided by the performance-per-device price of
TADOC. We show the results on the Pascal and embed-
ded GPU platforms for the large datasets in Figure 16 (b)
for illustration. On average, the performance-per-cost ratio
is 2.6, which implies that G-TADOC exhibits significant
performance-per-cost benefits, due to the high performance
of G-TADOC.

Comparison with GPU-accelerated uncompressed an-
alytics. In our evaluation for the six data analytics tasks
with the six datasets, G-TADOC reaches 13.2× of the perfor-
mance of the state-of-the-art TADOC on CPUs. A common
question is how the G-TADOC performance differs from the
performance of GPU-accelerated uncompressed analytics.
Currently, there is no implementation of the six analytics
tasks on GPUs, so we develop efficient GPU-accelerated
uncompressed analytics for comparison. Experiments show
that G-TADOC still achieves an average of 2× speedup.

Applicability. G-TADOC has the same applicability as
TADOC [6]. In general, G-TADOC targets the analytics tasks
that can be expressed as a DAG traversal problem, which
involves scanning the whole DAG.

7.5 Technical Contributions
We summarize our contributions in this section, and discuss
the potentials of enabling efficient GPU-based text analytics
without decompression.

First, we find that GPUs, including embedded GPUs,
are very suitable for text analytics directly on compression,
but need special optimizations. For example, G-TADOC
needs fine-grained thread-level workload scheduling for
GPU threads, thread-safe data structures for parallel up-
dates, and head and tail structures for sequence sensitive
applications.

Second, although the GPU memory is limited, our work
can help put much larger content directly in GPU memory.
This is extremely useful to embedded GPU systems. The
frequent data transmission between the CPU and GPU
drags down the performance advantages of GPUs when
large workloads fail to be loaded to the GPU memory at
once. Our work sheds light on the GPU acceleration design
for such big data applications.

Third, the GPU platforms, especially the embedded GPU
platforms, are both cost-effective and energy-efficient, which
can be applied to a wide range of data analytics applications
directly on compression, especially in large data centers.
Moreover, experiments show that a GPU server can have
much higher performance on data analytics directly on
compressed data than a ten-node cluster does.

8 RELATED WORK

As far as we know, G-TADOC is the first work that enables
efficient GPU-based text analytics without decompression.
In this section, we show the related work of grammar
compression, compression-based data analytics, GPU data
analytics, and embedded GPU platforms.

Grammar compression. There are plenty of works on
grammar compression [3], [4], [5], [6], [22], [23], [24], [25],
[26], [27], [28], [29]. The closest work to G-TADOC is TA-
DOC, which is the text analytics directly on compression
in single-node and distributed environments [4]. TADOC
extends Sequitur [30], [31], [32] as its compression algorithm
for data analytics. After TADOC being proposed, Zhang et
al. [3] proposed Zwift, which is the first TADOC program-
ming framework, including a domain specific language,
TADOC compiler and runtime, and a utility library. Then,
Zhang et al. [6] applied TADOC as the storage to support
advanced document analytics. Furthermore, Zhang et al. [5]
enabled random accesses to TADOC compressed data, and
at the same time, supported insert and append operations. In
this work, we enable TADOC on GPUs, which improves the
performance of TADOC significantly.

Index compression. The compression-based data ana-
lytics is an active research domain in recent years. However,
typical approaches mainly use suffix trees and indexes [33],
[34], [35], [36], [37], [38], [38], [39], [40], [41]. Suffix trees are
traditional representations for data compression [33], [42]
but incur huge memory usage [43], [44]. Suffix arrays [45]
and Burrows-Wheeler Transform [35], [36] are the develop-
ment of these compression formats, but still generate high
memory consumption [43]. Compressed suffix arrays [46],
[47], [48], [49], [50] and FM-indexes [36], [51], [52], [53], [54]
are more efficient than the previous compression techniques.
Furthermore, Agarwal et al. proposed Succinct [34], which
targets queries on compressed data. Moreover, there are
many works about inverted index compression [55], [56],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

0

50

100

150

A B C D E F

D
R

A
M

th

ro
u

g
h
p

u
t

(G
B

/s
)

wordCount sort

(a) DRAM throughput on GTX 1080.

0

50

100

A B C D E F

a
c
h
ie

v
e

d

o
c
c
u

p
a
n

c
y

(%
)

invertedIndex termVector

(b) Achieved occupancy on GTX 1080.

0

50

100

A B C D E F

a
c
h

ie
v
e

d

o
c
c
u

p
a

n
c
y

(%
)

sequenceCount rankedInvertedIndex

(c) Achieved occupancy on Jetson AGX Xavier.

Fig. 15. Analysis of performance metrics.

1

10

100

1000

E F E F

GTX 1080 Jetson

p
e

rf
o

rm
a

n
c
e

-p
e

r-
p

o
w

e
r

ra
ti
o

wordCount sort

termVector sequenceCount

(a) Energy efficiency analysis.

1

10

100

E F E F

GTX 1080 Jetson

p
e

rf
o

rm
a

n
c
e
-p

e
r-

c
o

s
t
ra

ti
o

invertedIndex

rankedInvertedIndex

(b) Cost effectiveness analysis.

Fig. 16. Analysis of energy efficiency and cost effectiveness.

[57], [58], [59], [60], [61]. For example, Petri and Moffat [55]
developed compression tools for compressed inverted in-
dexes. Different from these works, G-TADOC targets text
analytics directly on compressed data on GPUs.

GPU data analytics. GPUs have been applied to various
aspects of data analytics, including structured data ana-
lytics, stream data analytics, graph analytics, and machine
learning analytics. For example, MapD (Massively Parallel
Database) [62] is a popular big data analytics platform
powered by GPUs. Most current analytics frameworks, such
as Spark, have supported GPUs [63]. SABER [64] is a
stream system that schedules queries on both CPUs and
GPUs, and Zhang et al. [13] further developed FineStream,
which enables fine-grained stream analytics on CPU-GPU
integrated architectures. Gunrock [65] is an efficient graph
library for graph analytics on GPUs, and for large graphs,
multi-GPU graph analytics have been explored [66]. For
machine learning data analytics, parallel technologies have
been extensively applied to various aspects, especially for
deep learning applications [67], [68]. Currently, most ma-
chine learning frameworks, such as TensorFlow [69], sup-
port GPU.

Embedded GPU platform. Embedded GPU systems
are popular in recent days, due to their features of low
power and low cost compared to HPC systems such as
TianHe [70], [71]. A large amount of literature has inves-
tigated the utilization of embedded GPU systems. Davidson
et al. [72] analyzed the performance of their error resilient
image processing application on a low power embedded
GPU platform. Ukidave et al. [73] evaluated the performance
of the unified memory structure of Nvidia TK1, as well
as the power-performance ratio and energy effectiveness.
Mittal [74] provided a survey for works that evaluate and
optimize neural network applications on Jetson platforms.
Lee et al. [75] used AlexNet on the Jetson TX1 board to
recognize the license plate number of vehicles effectively.
Rungsuptaweekoon et al. [76] evaluated the power efficiency

of image recognition on Jetson TX2 with YOLO algorithm,
as well as its throughput. Amert et al. [77] showed the
important aspects of Nvidia TX2’s GPU in fully autonomous
vehicles’ scheduling through experiments. Jose et al. [78]
developed an intelligent multicamera face recognition based
surveillance system on Jetson TX2.

9 CONCLUSION

In this paper, we have presented G-TADOC enabling effi-
cient GPU-based text analytics without decompression. We
show the challenges of parallelism, result update conflicts
from multi-threads, and sequence sensitivities in developing
TADOC on GPUs, and present a series of solutions in
solving these challenges. By developing an efficient parallel
execution engine with data structures and sequence support
on GPUs, G-TADOC achieves 13.2× speedup on average
compared to the state-of-the-art TADOC. In addition, ex-
periments show that G-TADOC achieves 2.6× performance-
per-cost benefits and 32.5× energy efficiency over TADOC.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (No. 2018YFB1004401),
National Natural Science Foundation of China (61732014,
62172419, U20A20226, and 61802412), Beijing Natural Sci-
ence Foundation (4202031), Tsinghua University-Peking
Union Medical College Hospital Initiative Scientific Re-
search Program (20191080594), State Key Laboratory of
Computer Architecture (ICT, CAS) under Grant No. CAR-
CHA202007, and GHfund A (No. 20210701). This work
is also sponsored by CCF-Tencent Open Research Fund.
Feng Zhang is the corresponding author of this paper.

REFERENCES

[1] “JETSON XAVIER NX,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-xavier-nx/,
2020.

[2] “Jetson AGX Xavier Developer Kit,” https://developer.nvidia.
com/embedded/jetson-agx-xavier-developer-kit, 2020.

[3] F. Zhang, J. Zhai et al., “Zwift: A Programming Framework for
High Performance Text Analytics on Compressed Data,” in ICS,
2018.

[4] F. Zhang, J. Zhai et al., “Efficient document analytics on com-
pressed data: Method, challenges, algorithms, insights,” PVLDB,
2018.

[5] F. Zhang, J. Zhai et al., “Enabling efficient random access to
hierarchically-compressed data,” in ICDE, 2020.

[6] F. Zhang, J. Zhai et al., “TADOC: Text analytics directly on com-
pression,” The VLDB Journal, 2020.

[7] T. Joachims, “A Probabilistic Analysis of the Rocchio Algorithm
with TFIDF for Text Categorization.” Carnegie-mellon univ pitts-
burgh pa dept of computer science, Tech. Rep., 1996.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

[8] F. Zhang, Z. Pan et al., “G-TADOC: Enabling Efficient GPU-Based
Text Analytics without Decompression,” in ICDE, 2021.

[9] W. Xia, H. Jiang et al., “A comprehensive study of the past, present,
and future of data deduplication,” Proceedings of the IEEE, vol. 104,
no. 9, pp. 1681–1710, 2016.

[10] W. Xia, X. Zou et al., “The design of fast content-defined chunking
for data deduplication based storage systems,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 9, pp. 2017–2031,
2020.

[11] K. Zhou, C. Fu, and S. Yang, “Big data driven smart energy man-
agement: From big data to big insights,” Renewable and Sustainable
Energy Reviews, vol. 56, pp. 215–225, 2016.

[12] “Wikipedia HTML data dumps,” https://dumps.wikimedia.org/
enwiki/, 2017.

[13] F. Zhang, L. Yang et al., “FineStream: Fine-Grained Window-
Based Stream Processing on CPU-GPU Integrated Architectures,”
in USENIX ATC, 2020.

[14] F. Zhang, C. Zhang et al., “Fine-grained multi-query stream pro-
cessing on integrated architectures,” IEEE Transactions on Parallel
and Distributed Systems, 2021.

[15] D. Guide, “CUDA C programming guide,” NVIDIA, July, 2013.
[16] F. Zhang, J. Zhai et al., “Understanding co-running behaviors on

integrated CPU/GPU architectures,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 3, pp. 905–918, 2016.

[17] L. Chen, X. Huo, and G. Agrawal, “Accelerating MapReduce on
a coupled CPU-GPU architecture,” in SC’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE, 2012, pp. 1–11.

[18] E. Amazon, “Amazon elastic compute cloud (Amazon EC2),”
Amazon Elastic Compute Cloud (Amazon EC2), 2010.

[19] M. Lichman, “UCI machine learning repository,” http://archive.
ics.uci.edu/ml, 2013.

[20] “COVID-19 Data from Yelp Open Dataset,” https://www.yelp.
com/dataset, 2019.

[21] “DBLP,” https://dblp.uni-trier.de/xml/, 2020.
[22] W. Rytter, “Grammar compression, lz-encodings, and string al-

gorithms with implicit input,” in International Colloquium on Au-
tomata, Languages, and Programming, 2004.

[23] M. Charikar, E. Lehman et al., “The smallest grammar problem,”
IEEE Transactions on Information Theory, 2005.

[24] T. Gagie, P. Gawrychowski et al., “A faster grammar-based self-
index,” in International Conference on Language and Automata Theory
and Applications, 2012.

[25] P. Bille, G. M. Landau et al., “Random access to grammar-
compressed strings and trees,” SIAM Journal on Computing, 2015.

[26] P. Bille, A. R. Christiansen et al., “Finger search in grammar-
compressed strings,” arXiv preprint arXiv:1507.02853, 2015.

[27] N. R. Brisaboa, A. Gómez-Brandón et al., “Gract: a grammar-based
compressed index for trajectory data,” Information Sciences, 2019.

[28] M. Ganardi, A. Jeż, and M. Lohrey, “Balancing straight-line pro-
grams,” in Annual Symposium on Foundations of Computer Science,
2019.

[29] Y. Takabatake, H. Sakamoto et al., “A space-optimal grammar
compression,” in 25th Annual European Symposium on Algorithms,
2017.

[30] C. G. Nevill-Manning, “Inferring sequential structure,” Ph.D. dis-
sertation, University of Waikato, 1996.

[31] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm,” J. Artif. Intell.
Res., 1997.

[32] C. G. Nevill-Manning and I. H. Witten, “Linear-time, incremental
hierarchy inference for compression,” in Data Compression Confer-
ence, 1997.

[33] G. Navarro, Compact Data Structures: A Practical Approach. Cam-
bridge University Press, 2016.

[34] R. Agarwal, A. Khandelwal, and I. Stoica, “Succinct: Enabling
queries on compressed data,” in NSDI, 2015.

[35] M. Burrows and D. J. Wheeler, “A block-sorting lossless data
compression algorithm,” 1994.

[36] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal
of the ACM (JACM), 2005.

[37] R. Grossi, A. Gupta, and J. S. Vitter, “When indexing equals
compression: Experiments with compressing suffix arrays and
applications,” in Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, 2004.

[38] P. Ferragina, R. González et al., “Compressed text indexes: From
theory to practice,” Journal of Experimental Algorithmics (JEA), 2009.

[39] A. Farruggia, P. Ferragina, and R. Venturini, “Bicriteria data
compression: efficient and usable,” in European Symposium on
Algorithms, 2014.

[40] P. Ferragina, I. Nitto, and R. Venturini, “On the bit-complexity
of lempel-ziv compression,” in Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, 2009.

[41] S. Gog, T. Beller et al., “From theory to practice: Plug and play with
succinct data structures,” in International Symposium on Experimen-
tal Algorithms, 2014.

[42] K. Sadakane, “Compressed suffix trees with full functionality,”
Theory of Computing Systems, 2007.

[43] W.-K. Hon, T. W. Lam et al., “Practical aspects of Compressed
Suffix Arrays and FM-Index in Searching DNA Sequences,” in
ALENEX/ANALC, 2004.

[44] S. Kurtz, “Reducing the space requirement of suffix trees,” Soft-
ware: Practice and Experience, 1999.

[45] U. Manber and G. Myers, “Suffix arrays: a new method for on-line
string searches,” siam Journal on Computing, 1993.

[46] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-
compressed text indexes,” in Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, 2003.

[47] R. Grossi and J. S. Vitter, “Compressed suffix arrays and suffix
trees with applications to text indexing and string matching,”
SIAM Journal on Computing, 2005.

[48] K. Sadakane, “Compressed text databases with efficient query
algorithms based on the compressed suffix array,” in International
Symposium on Algorithms and Computation, 2000.

[49] K. Sadakane, “Succinct representations of lcp information and
improvements in the compressed suffix arrays,” in Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
2002.

[50] K. Sadakane, “New text indexing functionalities of the compressed
suffix arrays,” Journal of Algorithms, 2003.

[51] “FM-index,” https://en.wikipedia.org/wiki/FM-index, 2018.
[52] P. Ferragina and G. Manzini, “Opportunistic data structures with

applications,” in Foundations of Computer Science. Proceedings. 41st
Annual Symposium on, 2000.

[53] P. Ferragina and G. Manzini, “An experimental study of a com-
pressed index,” Information Sciences, 2001.

[54] P. Ferragina and G. Manzini, “An experimental study of an op-
portunistic index,” in Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms, 2001.

[55] M. Petri and A. Moffat, “Compact inverted index storage using
general-purpose compression libraries,” Software: Practice and Ex-
perience, 2018.

[56] A. Moffat and M. Petri, “Index compression using byte-aligned
ANS coding and two-dimensional contexts,” in WSDM, 2018.

[57] G. E. Pibiri, M. Petri, and A. Moffat, “Fast dictionary-based com-
pression for inverted indexes,” in WSDM, 2019.

[58] G. E. Pibiri and R. Venturini, “Techniques for Inverted Index
Compression,” arXiv preprint arXiv:1908.10598, 2019.

[59] G. E. Pibiri, R. Perego, and R. Venturini, “Compressed Indexes for
Fast Search of Semantic Data,” TKDE, 2020.

[60] H. Oosterhuis, J. S. Culpepper, and M. de Rijke, “The potential of
learned index structures for index compression,” in Proceedings of
the 23rd Australasian Document Computing Symposium, 2018.

[61] J. Mackenzie, A. Mallia et al., “Compressing inverted indexes with
recursive graph bisection: A reproducibility study,” in European
Conference on Information Retrieval, 2019.

[62] C. Root and T. Mostak, “MapD: A GPU-powered big data analytics
and visualization platform,” in ACM SIGGRAPH 2016 Talks, 2016.

[63] Y. Yuan, M. F. Salmi et al., “Spark-GPU: An accelerated in-memory
data processing engine on clusters,” in Big Data, 2016.

[64] A. Koliousis, M. Weidlich et al., “SABER: Window-based hybrid
stream processing for heterogeneous architectures,” in Interna-
tional Conference on Management of Data, 2016.

[65] Y. Wang, Y. Pan et al., “Gunrock: GPU graph analytics,” ACM
Transactions on Parallel Computing (TOPC), 2017.

[66] Y. Pan, Y. Wang et al., “Multi-GPU graph analytics,” in IPDPS,
2017.

[67] S. R. Upadhyaya, “Parallel approaches to machine learning—a
comprehensive survey,” Journal of Parallel and Distributed Comput-
ing, 2013.

[68] Z. Ren, Y. Liu et al., “AIPerf: Automated Machine Learning as an
AI-HPC Benchmark,” Big Data Mining and Analytics, vol. 4, no. 3,
pp. 208–220, 2021.

https://dumps.wikimedia.org/enwiki/
https://dumps.wikimedia.org/enwiki/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://dblp.uni-trier.de/xml/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[69] M. Abadi, A. Agarwal et al., “Tensorflow: Large-scale machine
learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[70] R. Wang, K. Lu et al., “Brief introduction of tianhe exascale proto-
type system,” Tsinghua Science and Technology, vol. 26, no. 3, p. 11,
2021.

[71] J. Li, B. Ji et al., “Parallel Optimization of the Crystal-KMC on
Tianhe-2,” Tsinghua Science and Technology, vol. 26, no. 3, p. 7, 2021.

[72] R. L. Davidson and C. P. Bridges, “Error resilient GPU accelerated
image processing for space applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 9, pp. 1990–2003, 2018.

[73] Y. Ukidave, D. Kaeli et al., “Performance of the NVIDIA Jetson
TK1 in HPC,” in 2015 IEEE International Conference on Cluster
Computing. IEEE, 2015, pp. 533–534.

[74] S. Mittal, “A Survey on optimized implementation of deep learn-
ing models on the NVIDIA Jetson platform,” Journal of Systems
Architecture, vol. 97, pp. 428–442, 2019.

[75] S. Lee, K. Son et al., “Car plate recognition based on CNN using
embedded system with GPU,” in 2017 10th International Conference
on Human System Interactions (HSI). IEEE, 2017, pp. 239–241.

[76] K. Rungsuptaweekoon, V. Visoottiviseth, and R. Takano, “Evaluat-
ing the power efficiency of deep learning inference on embedded
gpu systems,” in 2017 2nd International Conference on Information
Technology (INCIT). IEEE, 2017, pp. 1–5.

[77] T. Amert, N. Otterness et al., “GPU scheduling on the NVIDIA
TX2: Hidden details revealed,” in 2017 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2017, pp. 104–115.

[78] E. Jose, M. Greeshma et al., “Face recognition based surveillance
system using facenet and mtcnn on jetson tx2,” in 2019 5th Interna-
tional Conference on Advanced Computing & Communication Systems
(ICACCS). IEEE, 2019, pp. 608–613.

Zaifeng Pan received the bachelor degree from
Shanghai Jiao Tong University in 2021, and he is
pursuing the master degree in computer science
at Renmin University of China, under the super-
vision of prof. Feng Zhang. His current research
interests include parallel computing and hetero-
geneous computing.

Feng Zhang received the bachelor degree from
Xidian University in 2012, and the PhD degree
in computer science from Tsinghua University in
2017. He is an associate professor in DEKE Lab
and School of Information, Renmin University
of China. His major research interests include
database systems, and parallel and distributed
systems.

Yanliang Zhou received the undergraduate de-
gree from School of Information, Renmin Uni-
versity of China. He joined the Key Laboratory
of Data Engineering and Knowledge Engineer
(MOE) in 2019, and now works as a research
assistant. His current research interests include
high performance computing and parallel accel-
erating.

Jidong Zhai received the BS degree in com-
puter science from University of Electronic Sci-
ence and Technology of China in 2003, and
PhD degree in computer science from Tsinghua
University in 2010. He is an associate profes-
sor in Department of Computer Science and
Technology, Tsinghua University. His research
interests include performance evaluation for high
performance computers, performance analysis
and modeling of parallel applications.

Xipeng Shen received the PhD degree in com-
puter science from the University of Rochester,
in 2006. He is a professor in Computer Science
at the North Carolina State University. He is a
receipt of the DOE Early Career Award, NSF CA-
REER Award, Google Faculty Research Award,
and IBM CAS Faculty fellow Award. He is an
ACM distinguished member, ACM distinguished
speaker, and a senior member of the IEEE. His
interest is in Programming Systems and Ma-
chine Learning.

Onur Mutlu Onur Mutlu received the BS de-
grees in computer engineering and psychology
from the University of Michigan, Ann Arbor, and
the MS and PhD degrees in ECE from the Uni-
versity of Texas at Austin. He is a professor of
computer science at ETH Zurich. He is also a
faculty member with Carnegie Mellon Univer-
sity, where he previously held the Strecker Early
Career Professorship. His current broader re-
search interests include computer architecture,
systems, hardware security, and bioinformatics.

Xiaoyong Du obtained the B.S. degree from
Hangzhou University, Zhengjiang, China, in
1983, the M.E. degree from Renmin Univer-
sity of China, Beijing, China, in 1988, and the
Ph.D. degree from Nagoya Institute of Technol-
ogy, Nagoya, Japan, in 1997. He is currently a
professor with the School of Information, Renmin
University of China. His current research inter-
ests include databases and intelligent informa-
tion retrieval.

	Introduction
	Background and Premises
	Embedded GPUs
	Text Analytics Directly on Compression

	Motivation of G-TADOC
	Why do we need TADOC on embedded GPU systems?
	Challenges

	G-TADOC Design
	General Design
	Fine-Grained Thread-Level Execution Engine
	G-TADOC Data Structures
	Sequence Support in G-TADOC

	Embedded GPU Optimization
	Advantages over Discrete GPUs
	Large Datasets
	Other Exploration

	Implementation
	Evaluation
	Experimental Setup
	Performance
	Optimization Analysis
	Detailed Analysis
	Technical Contributions

	Related Work
	Conclusion
	References
	Biographies
	Zaifeng Pan
	Feng Zhang
	Yanliang Zhou
	Jidong Zhai
	Xipeng Shen
	Onur Mutlu
	Xiaoyong Du

