
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

G-SLIDE: A GPU-Based Sub-Linear Deep
Learning Engine via LSH Sparsification

Zaifeng Pan, Feng Zhang, Hourun Li, Chenyang Zhang, Xiaoyong Du, Dong Deng

Abstract—Deep learning has been one of the trendiest research topics. However, as data quantities rise exponentially, training large
neural networks can become prohibitively expensive with billions of parameters. Fortunately, recent research has discovered that not
all of the computations in traditional network training are necessary. By selectively sparsifying the majority of the neurons during
training, we can still obtain acceptable accuracy. SLIDE, a C++ OpenMP-based sub-linear deep learning engine, has been developed
in this situation. SLIDE uses the algorithm of locality sensitive hashing (LSH) to query neurons with high activation in sub-linear time. It
achieves a remarkable speedup in training large fully-connected networks by making use of the network sparsity as well as multi-core
parallelism. However, SLIDE is limited to CPUs, ignoring the popular GPU devices with greater parallel potential and computational
capability. In this paper, we propose G-SLIDE, a GPU-based sub-linear deep learning engine, which combines the benefits of SLIDE’s
adaptive sparsification algorithms with GPUs’ high performance. The main challenges in developing G-SLIDE are efficiently using LSH
to sparsify networks and training the special sparse neural networks on the GPU. To address these challenges, we propose several
novel solutions, such as specific data formats and appropriate workload partitioning for threads to fully utilize the GPU resources. We
evaluate G-SLIDE on two extremely sparse datasets with a 2080 Ti GPU, and the results demonstrate that for the time of one training
epoch, G-SLIDE can achieve more than 16.4× speedup over SLIDE on a 32-core/64-thread CPU. Furthermore, on the same platform,
G-SLIDE can earn an average of 16.2× speedup over TensorFlow-GPU and 30.8× speedup over TensorFlow-CPU.

Index Terms—GPU, machine learning system, adaptive sparsity, sparse neural network, LSH

✦

1 INTRODUCTION

Deep learning technologies have been applied to a wide
range of application scenarios in recent years. The success
of neural networks relies on millions or even billions of
parameters, which are driven and powered by vast amounts
of data. However, deep learning models can incur high
computational costs in training and inference phases as the
amount of data grows. Large neural networks are therefore
impractical to deploy in resource-constrained situations.

Fortunately, not all computation is necessary during
neural network training. Recent studies [1], [2] show that
we can achieve close accuracy by sampling only a few active
neurons during every gradient update in training. However,
this adaptive sparsification cannot guarantee computational
savings [3], as the process of sampling can also lead to extra
computation. Spring et al. [4] utilized a smart maximum
inner product search method based on locality sensitive
hashing (LSH) [5] to adaptively sparsify neurons in sub-
linear time, thus showing the possibility of efficient training
by adaptive sparsification.

In such a situation, Chen et al. [3], [6] developed a sub-
linear deep learning engine (SLIDE), which extends the idea
of LSH-based sparsification in [4] and first turns the compu-
tation advantage into an efficient implementation for fully

• Z. Pan, F. Zhang, H. Li, C. Zhang, and X. Du are with
the Key Laboratory of Data Engineering and Knowledge Engi-
neering (MOE), and with the School of Information, Renmin
University of China, Beijing 100872, China. E-mail: {panzaifeng,
fengzhang,lihourun,chenyangzhang,duyong}@ruc.edu.cn.

• D. Deng is with the Computer Science Department, Rutgers University,
The United States of America. E-mail: dong.deng@rutgers.edu
(Corresponding author: Feng Zhang)

connected networks. SLIDE is a C++ OpenMP-based system
that utilizes multi-core parallelism to accelerate the training
processes of adaptively sparse networks. Experiments [3]
show that SLIDE on a 44-core CPU can outperform the
TensorFlow implementation on an NVIDIA V100 GPU by
a significant margin.

SLIDE provides us with a new perspective for the
training of large neural networks. However, the current
implementation of SLIDE is confined to multi-core CPUs,
excluding GPUs, which are the most popular devices in
the deep learning area. The high parallel computing capa-
bilities and memory bandwidth of GPUs provide lots of
opportunities for SLIDE acceleration. Besides, the extreme
sparsity of SLIDE also makes it possible for GPUs to operate
many computations directly in their on-chip cache (shared
memory). Hence, we continue the work and develop an
efficient GPU-based SLIDE system.

Although using GPUs to accelerate SLIDE is promising,
we need to address three challenges. First, designing an
efficient LSH-based sparsification algorithm on GPUs is
challenging. A finer-grained parallel design of this algo-
rithm is required to fully exploit the GPU’s high parallelism.
Some missing important data structures on GPUs and the
memory limitations also exacerbate this problem. Second,
there are no GPU-based tools that target the particular
sparse computations required in SLIDE, and developing
high-performance kernels on GPUs to handle this sparsity
is difficult. Third, the difference between sparse and dense
layers changes the features of the computing tasks, and the
computing strategy needs to be re-designed accordingly to
compute more efficiently.

We propose G-SLIDE, a GPU-based Sub-LInear Deep
Learning Engine, further improving the SLIDE system and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

achieving higher acceleration. G-SLIDE includes three novel
characteristics. First, we analyze the memory access patterns
and select appropriate data formats for various scenar-
ios. Second, we develop an LSH sparsification module by
properly partitioning the workloads and designing effective
assistant data structures on GPUs. Third, we provide an
efficient sparse neural network module to fully utilize the
GPU resources and the benefits of the network sparsity.

We evaluate G-SLIDE on two extremely sparse real
datasets, Amazon-670K and WikiLSHTC-325K, with more
than 100 million parameters for training. We evaluate G-
SLIDE and TensorFlow-GPU with a 2080 Ti GPU, and
SLIDE and TensorFlow-CPU with a 32-core/64-thread CPU.
Experiments show that for the time of one training epoch,
G-SLIDE can achieve 11.9× speedup over SLIDE, 25.6×
speedup over TensorFlow-GPU, and 48.9× speedup over
TensorFlow-CPU on Amazon-670K. Besides, G-SLIDE can
achieve 20.8× speedup over SLIDE, 6.8× speedup over
TensorFlow-GPU, and 12.7× speedup over TensorFlow-
CPU on WikiLSHTC-325K.

We summarize our contributions as follows.
• We analyze the SLIDE framework and find oppor-

tunities to accelerate it on the GPU to obtain better
performance.

• We design efficient LSH sparsification and adaptively
sparse neural network modules on the GPU with an
appropriate workload partitioning strategy and well-
designed data structures.

• We propose G-SLIDE, a deep learning acceleration sys-
tem on the GPU. G-SLIDE accelerates deep neural net-
works based on SLIDE and involves many special op-
timizations towards the acceleration process and GPU
architecture.

• We evaluate G-SLIDE on two large datasets, compare
it with SLIDE and TensorFlow solutions on both CPU
and GPU, and find that G-SLIDE achieves great perfor-
mance benefits.

The remaining part of this paper is organized as follows.
Section 2 introduces the background of the GPU, LSH, and
SLIDE. Section 3 shows the motivation of G-SLIDE as well
as the challenges in developing the system. We then present
the detailed design of the G-SLIDE system in Section 4. The
evaluation and experimental results are shown in Section
5. Sections 6 and 7 are the related work and conclusion,
respectively.

2 BACKGROUND

In this section, we introduce the background of the SLIDE
deep learning system from three aspects, including graphics
processing unit (GPU), locality sensitive hashing (LSH), and
sub-linear deep learning engine (SLIDE).

2.1 Graphics Processing Unit (GPU)

The Graphics Processing Unit (GPU) is specialized for im-
age processing initially. However, due to its highly-parallel
computing capability, it has become an integral part of
mainstream computing systems nowadays [7], [8], [9], [10].

Unlike CPUs, GPUs contain many lightweight cores,
which are grouped into many streaming multiprocessors

(SMs). Logically, a group of threads constitutes a block, and
each block can only be assigned to one SM. The threads
within a block share the local resources. The scheduling
unit in an SM is a warp, which consists of 32 threads.
Threads within a warp are executed in a single-instruction-
multiple-threads (SIMT) fashion. Hence, the branches of
threads can cause warp divergence, leading to performance
degradation. Therefore, to fully utilize the parallel com-
puting capability, appropriate partitioning of workloads is
required.

The GPU has various kinds of memory resources. The
global memory is the memory that can be accessed by all
threads, equipped with L1 and L2 caches. When each thread
within a warp accesses global memory, the memory transac-
tion can be performed in the unit of 128 bytes. Hence, mak-
ing the global memory accesses of threads within a warp
successive can significantly reduce the overhead. Besides,
an SM has its own shared memory, a programmable on-chip
cache that can be accessed by all threads within a block.
Utilization of this cache is of great importance for efficient
programming on the GPU.

2.2 Locality Sensitive Hashing (LSH)

Locality sensitive hashing is a family of hash functions with
the property that similar inputs have a higher probability of
collision. A more strict condition of LSH is that the collision
probability of two inputs monotonically increases with their
similarity. And the property is satisfied by the majority of
popular LSH functions, such as Minhash [11], Simhash [12],
Winner Take All hash [13], and Densified Winner Take All
hash [14]. LSH has been widely used in the nearest neighbor
search [5], [15], [16].

Winner Take All. Winner Take All (WTA) hash was
first seen in the work done by J. Yagnik et al. [13], which
was put forward as a new measure to help solve the rank
correlation measurement problem. Because the rank corre-
lation measure problem is based on the relative ordering
of elements, an efficient and useful method of presenting
input features and retrieving similar ones is critical. WTA
is just such a sparse embedded method that can transform
the input feature space to binary codes so that Hamming
distance in the resulting space can reflect the similarity of
inputs.

An example of the WTA hash procedure is shown in
Figure 1. Assume we have 4 input vectors x0, x1, x2 and
x3 with lengths of 4, a permutation Θ = {3, 0, 1, 2}, and
a window size K = 3. Then, to figure out the WTA hash
codes of inputs, we need to read the data in x according to
the permutation Θ. For example, the first value of Θ(x0) is
6, as Θ[0] = 3, and x0[3] = 6. After obtaining the value of
Θ(x), we truncate the arrays by the value of the window
size K , with ΘK(x) left. The hash codes are the indices of
the maximum values in ΘK(x).

We use WTA as our LSH function, and to improve the
performance and save the space, we set the window size
to a constant number and then truncate the permutation Θ
as we only need the first K items. The number of hashing
stages, therefore, shrinks to 2 accordingly.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

𝑥 1, 9, 2, 6 0, 8, 1, 7 1, 7, 0, 8 9, 1, 6, 2

Θ𝐾(𝑥) 6, 1, 9 7, 0, 8 8, 1, 7 2, 9, 1

𝐻𝑤𝑡𝑎(𝑥) 2 2 0 1

Θ = {3, 0, 1, 2}

Θ(𝑥) 6, 1, 9, 2 7, 0, 8, 1 8, 1, 7, 0 2, 9, 1, 6

𝐾 = 3

Fig. 1. An example of the Winner Take All hash procedure. The color red
indicates that this element is the maximum one in the vector.

2.3 Sub-Linear Deep learning Engine (SLIDE)
SLIDE is a C++ OpenMP-based system proposed by Beidi
Chen et al. [3], which employs the smart LSH algorithm [4]
to sparsify the neural networks during training.

The key idea of the LSH-based sparsification algorithm
in SLIDE is to select the neurons that tend to have high
activations in sub-linear time. The algorithm uses two
parameters, (K,L), which means that a sparse layer is
equipped with L independent LSH tables, and each table
has K random hash functions. At the pre-processing phase,
the LSH tables are constructed with many buckets, and each
bucket contains a set of neurons. Two neurons are inserted
into the same bucket only when their K hash codes of
the weight vector are identical. During the query phase,
SLIDE computes the input’s hash codes and then unions the
selected L buckets of these LSH tables. By this mechanism,
the neurons with large inner products of weight vector and
inputs (which is just the activation) are sampled, as the
research [5] points out.

The workflow of SLIDE contains four stages: 1) initial-
ization of L LSH tables by neurons’ weights, 2) query on
the LSH tables for active neurons to feed-forward, 3) back-
ward propagation or gradient update on the active neurons
sampled in forwarding, and 4) update of the LSH tables
after weight updates. Benefiting from the network sparsity,
SLIDE gains lots of computation savings when training.

Besides, SLIDE utilizes OpenMP to guide the parallelism
across a batch on a multi-core CPU. It also adopts the HOG-
WILD [17] style gradient update, as the updates are unlikely
to overlap due to the extreme sparsity. Experiments show
that for a huge fully-connected neural network, the training
process of SLIDE on a 44-core CPU can be significantly
accelerated compared to the optimized TensorFlow imple-
mentation on an NVIDIA V100 GPU with slight accuracy
loss.

3 MOTIVATION AND CHALLENGES

In this section, we show the motivation of G-SLIDE and the
major challenges in developing the system.

3.1 Motivation
We introduce the motivation of G-SLIDE from three per-
spectives, including the importance of SLIDE, the limita-
tions of SLIDE, and the opportunities for GPU acceleration,
respectively.

Importance of SLIDE. Deep learning is a computing
model composed of multiple processing layers, which can
present and learn multiple abstract levels of input data.
Various deep learning models fully empower fundamen-
tal applications such as computer vision [18], [19], [20],
robotics [21], [22], data analytics [23], [24], classification
problems [25], [26], natural language processing [27], and so
on. Despite their wide range of applications, deep learning
models have a high computational cost in training and
inference. Even worse, the scale of neural networks is be-
coming increasingly large, with even billions of parameters
to train. To handle this problem, SLIDE has been proposed,
which can achieve significant computation savings and
acceleration on extremely sparse datasets over traditional
methods. SLIDE indicates a promising direction to address
the challenges of huge networks with billions of parameters.

Limitations of SLIDE. The current version of SLIDE is
only implemented on multi-core CPUs, without resorting
to high-performance heterogeneous coprocessors like GPUs.
However, although the sparsity of networks can signifi-
cantly reduce the computations, the left scale of work is still
too large for CPUs to handle efficiently. For example, for the
dataset of Amazon-670K [28], although SLIDE only samples
about 3000 neurons [3] for the last wide layer, there are still
128 × 128 × 3000 × 256 = 12.6 billion floating multiplica-
tions if the batch size is 256, even without consideration of
the Softmax activation. Similarly, the number of memory
accesses is also unbearable for CPUs. Besides, to update
the LSH tables, SLIDE has to scan all neurons’ weight
vectors and figure out their buckets at the L LSH tables. The
complexity of this computation is about O(nKL), where n
is the neuron number of this layer, without any saving from
the sparsity.

Opportunities for GPU acceleration. GPUs are widely
used for high-performance computing, especially in the area
of deep learning. Due to the thousands of cores, GPUs can
achieve a much higher degree of parallelism than CPUs.
Besides, GPUs also have greater floating-point computing
capability and memory access bandwidth over CPUs. There
are two major opportunities to accelerate the SLIDE sys-
tem on the GPU. The first one is the great potential of
parallelism. SLIDE uses OpenMP to achieve coarse-grained
parallelism across a batch. We can further extract the finer-
grained parallelism with the cooperation of threads within
a block. The second is the acceleration of both floating-
point computation and memory access, which are still on
a large scale even after sparsification for large networks, as
previously discussed.

3.2 Challenges

Enabling G-SLIDE to take advantage of GPUs’ high band-
width and computing capability requires us to handle the
following three challenges.

The first challenge is how to develop the LSH-based
sparsification algorithm on GPUs efficiently. The algorithm
can be separated into two operations: LSH table construc-
tion and active neuron query. For both the construction and
query operations, we need to first compute the correspond-
ing K × L hash codes for multiple inputs by using Winner



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Take All, which contains massive parallelism opportunities.
However, how to partition the process and fully utilize the
computing and memory resources of GPUs is a problem
that deserves consideration. Besides, in query operation, we
need to gather all active neurons in the selected buckets of
those L hash tables after generating the hash codes. Then,
we count the frequency of each occurring neuron for further
sampling. SLIDE uses one linked hash table for each training
sample to count the frequency, but this data structure is
currently not provided by the CUDA library. Even worse,
the space cost of L LSH hash tables can also be a problem,
as the GPU memory is limited.

The second challenge comes from the adaptive sparsity
of neural networks. SLIDE queries the corresponding active
neuron set from the LSH hash tables for each input, so the
active neuron sets vary both inter- and intra-batch. Besides,
unlike typical sparse matrix multiplication, both the input
and output matrices can be sparse in SLIDE. As far as
we know, no existing tool on GPUs applies to this special
situation. More details of the unique features of this sparse
network are discussed in Section 4.4.

The third challenge is the significant difference between
sparse and dense layers, including neuron sizes and mem-
ory access patterns. A general solution to forward/back-
ward propagation target for both from sparse layer to dense
and from dense layer to sparse can introduce many issues,
such as warp divergence and memory bandwidth waste,
resulting in performance degradation. Hence, we should de-
sign custom kernels to adapt to the workloads and memory
access patterns in different situations.

4 G-SLIDE SYSTEM

We present the design and optimization of G-SLIDE in this
section.

4.1 General Design

In this part, we introduce the general design of G-SLIDE,
as shown in figure 2. We mainly discuss the data structure
support, the LSH sparsification module, the sparse neural
network module, and the workflow of G-SLIDE. We also
present our solutions to the aforementioned challenges.

Forward/Backward 
Propagation

Weight Update

Sparse Neural 
Network Module

LSH Table Construction

Active Neuron Query

LSH Sparsification
Module

Data Structure 
Support

Network

Layer

Host

Fig. 2. An overview of the G-SLIDE system.

Data structure support. In developing G-SLIDE, because
the neural network is extremely sparse, using ordinary
data structures can significantly waste the bandwidth of
the GPU, leading to performance degradation. Hence, we
need to use custom data structures to address this problem.
Besides, assistant data structures used in SLIDE, such as
linked hash tables, are missing on the GPU, so we need to
design their GPU version for usage. This individual module
provides data structures, such as compressed matrices and
linked hash tables, to the other modules.

LSH sparsification module. The LSH sparsification
module performs the same functionality as in SLIDE, which
contains the LSH table construction and the active neuron
query operations. For the construction operation, we con-
struct the LSH tables by the weights of the layer. For the
query operation, we query the tables and retrieve the active
neurons according to the input activations.

Sparse neural network module. Although the sparsity
reduces the computation of neural network training, there
are no existing tools applicable to the special structure
of neural networks in G-SLIDE. We develop efficient cus-
tomized kernels for forward and backward propagation and
weight update in this module.

Workflow. An example of the G-SLIDE workflow is
shown in Figure 3, which contains the following four stages.

• Initialization: We build the network with random
weights and construct the LSH tables for sparse layers
at this stage.

• Forward propagation: In the forward propagation, if
the next layer is sparse, we query its corresponding
LSH tables to obtain the active neurons, and we only
compute these neurons’ activations rather than all neu-
rons in this layer.

• Backward propagation: After the forward propagation,
we compare the outputs with the labels and start error
backward propagation and gradient update. These op-
erations only occur on the active neurons sampled at
the forward stage.

• Weight update and LSH table reconstruction: After the
backward propagation stage, we update the weights
according to the gradients. The LSH table update is also
required due to the weight change.

Solutions to challenges. In Section 3.2, we discuss
the major challenges in developing an efficient GPU-based
SLIDE system. In G-SLIDE, we address these challenges
through our careful design. To address the first challenge
of implementing an efficient LSH-based sparsification algo-
rithm, we analyze the scale of each input dimension and
distribute the memory accesses and computation workloads
properly to each thread in a block. We also develop effective
data structures on GPUs to support the entire process (Sec-
tion 4.3). To address the second challenge of the adaptive
sparsity of neural networks, we design efficient custom
kernels for the training of this particular network. These
kernels take advantage of the computation savings brought
by the network sparsity and fully utilize the GPU resources
(Section 4.4). To address the third challenge of the difference
between sparse and dense layers, we discuss the memory



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Batch Size

𝐴0

LSH hash table
LSH hash table

LSH hash tableForward propagation 

Backward propagation 

LSH table query

In
p

u
t

Si
ze

…

𝐴1

𝐴2
Dense Layer

Sparse Layer

Sparse Input

Fig. 3. The workflow of G-SLIDE. The matrices represent the activations
of a batch, with the row size of the neuron number or input size and the
column size of the batch size. Different colors represent active neurons
of different sample inputs in the batch.

access pattern for different situations and adaptively select
their proper data formats (Section 4.2).

4.2 Data Format
In this part, we discuss the data formats of both the active
neurons in sparse layers and the weight matrices.

Compressed sparse column format. There are only a
few neurons active for each sample in the batch for sparse
layers, so allocating a #neuron × batch_size matrix is
wasteful. Compressed sparse column (CSC) is a common
storage format used for sparse matrices. As illustrated in
Figure 4, we represent the active neurons in a batch by
three arrays, which contain the active neuron IDs, the
corresponding activation values, and the sample start in-
dices, respectively. This format not only saves the mem-
ory space, but also benefits the memory accesses. Memory
coalescing [29] is an important concept for GPUs, which
means combining multiple global memory accesses into a
single transaction. Memory coalescing occurs when threads
in single warp access successive 128 bytes of global memory
from the address aligned to 32. Hence, the CSC format can
significantly increase the chances of memory coalescing,
as all data in global memory is stored successively, while
the uncompressed format can introduce random memory
accesses with more memory transactions, thus achieving a
low utilization of global memory bandwidth. The reason
why we use CSC rather than CSR (compressed sparse row)
is that we tend to process the active neurons from the same
sample with the same block of threads.

Order selection of the weight matrices. There are two
typical methods for storing matrices or multidimensional
arrays, which are row-major order and column-major order.
A matrix is called in row-major/column-major order if the
consecutive elements in a row/column are stored next to
each other.

Figure 5 (a) shows an example of a dense layer next to
a sparse layer, where active neurons are painted orange. As
we only consider the active neurons, not all of the weights

1 1

9 8 1

2

17

1

6

1 9 2 6 8 17 1 1 1

0 1 2 5 1 3 0 1 4

0 4 6 8 9

Original Matrix

Activation Values

Active Neuron IDs

Sample Start Indices

Fig. 4. Illustration for the CSC format. The different colors represent
active neurons from different samples in a batch.

in the weight matrix are really needed in both forward and
backward propagation. The useful weights are also painted
in the matrix in the figure, and accordingly, we can observe
that the weights we need to read are successive in the
column. Hence, a weight matrix in column-major order is
preferred in this situation, as it increases the possibility for
us to do memory coalescing to improve throughput. Simi-
larly, according to figure 5 (b), row-major order is preferred
for the weight matrix of a sparse layer next to a dense layer.
In our test, if we do not store the weight matrix in proper
order, the kernel execution time can be 20× longer.

𝑊𝑛×𝑚

Sparse Layer Dense Layer

(a) Dense layer next to sparse.

𝑊𝑛×𝑚
Dense Layer Sparse Layer

(b) Sparse layer next to dense.

Fig. 5. The active neurons and their corresponding weights (painted
orange) in different situations.

G-SLIDE maintains the order of the weight matrices
during training, since whether a layer is sparse or not is
determined by users before training. Only when the model
needs to be saved for further training in another framework,
such as TensorFlow, will the format conversions occur.

4.3 LSH Sparsification
In this part, we show the implementation of the LSH
sparsification module with the LSH table construction and
active neuron query operations. We take one layer with L
hash tables and K hash functions of each hash table as an
example in this part. In addition, we present the design of
the GPU-based assistant data structures used in this module.

LSH table construction. For the construction operation,
we need to first compute the K × L hash codes for weight
vectors of each neuron by Winner Take All. Then, we insert
the neuron IDs into the corresponding buckets of all these
L hash tables. Figure 6 shows the bucket computing process
of the first row of the weight matrix (i.e., the weight vector



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

of neuron 0 in this layer), with 2 hash tables and 2 hash
functions for each table. For each random permutation Θ of
the hash function, we should first read the weights in the
vector according to the indices in Θ to get Θ(w). Then, we
find the position of the maximum element in Θ(w), which is
Hwta(w). Finally, we concatenate the K hash codes in a hash
table to obtain the bucket index. The concatenation of hash
codes is done by the shifting operation, and in this example,
we compute the first bucket index by (1 << 2) + 2 = 6, as
the length of each permutation is 3 and ⌈log2(3)⌉ = 2.

19 26 8 17𝑊𝑛×𝑚

Θ 0, 2, 1 3, 1, 2 1, 2, 0 0, 2, 3

Θ(𝑤) 19, 8, 26 17, 26, 8 26, 8, 19 19, 8, 17

𝐻𝑤𝑡𝑎(𝑤) 2 1 0 0

Bucket 6 0

Fig. 6. An example of bucket computing in LSH table construction.

In our practice, the number of neurons in sparse layers is
always huge, while the number of neurons in their previous
layers tends to be small. The total length of all permutations
can be large but still much less than this layer’s neuron
number. This observation hints that we can extract the paral-
lelism by partitioning the computation from the dimension
of neurons in this layer or the K × L hash functions.

As shown in Figure 7, we use a CUDA block responsible
for the bucket index computing of a certain number of
neurons with all L hash tables. The tables will be divided
into many tiles, and the block of threads will sequentially
process these tiles (the reason for this division is discussed
in the next paragraph). When the block is processing a
tile of tables, each thread in the block is responsible for
a pair of one neuron and several tables in the tile. The
threads will scan the corresponding permutations of their
responsible tables, compute the hash codes, figure out the
bucket index, and finally add the neuron to the tables. Finer-
grained parallelism, such as dividing the computation of
one table or one permutation into multiple tiles for multiple
threads, is not recommended because both the number of
hash functions (or permutations) in a table and the length
of a permutation are always small. The further division can
cause performance degradation due to the cost of inter-
thread communications.

For the bucket computing of each neuron, we need to
read the indices in all permutations, so the permutation
array is read multiple times. Hence, we can consider using
shared memory to store the array. Shared memory is an on-
chip memory shared by all threads within a block, and it can
be regarded as a programmable cache on the GPU. By using
shared memory, we can load the permutation data from
global memory to shared memory only once for each block,
and then read from the shared memory with low latency.
The problem is that the size of shared memory on the GPU
is limited (e.g., 96KB for V100). Therefore, instead of loading
the entire array once, we partition the permutation array
into many tiles, with each tile containing the permutations

𝑊𝑛×𝑚

table 0 table 1 table 2 table 3

neuron 0

neuron 2

neuron 1𝑊 Tile 0

𝐻𝑇 Tile 0 𝐻𝑇 Tile 1

𝑊 Tile 1

𝑊 Tile 2 Θ

𝐻𝑇

Shared Memory
Block 0 

Responsible Area
Thread 0: (neuron 0, { table 0, table 1 })
Thread 1: (neuron 0, { table 2, table 3 })
Thread 2: (neuron 1, { table 0, table 1 })
Thread 3: (neuron 1, { table 2, table 3 })
Thread 4: (neuron 2, { table 0, table 1 })
Thread 5: (neuron 2, { table 2, table 3 })

Thread responsible pairs in block 0
when processing 𝐻𝑇 tile 0

Fig. 7. An example of the workload partition of LSH table construction.
We divide both neurons (weights) and tables into many tiles, and block
0 is responsible for tile 0 of neurons and all tiles of tables. Block 0
processes the table tiles sequentially, and the threads’ responsible pairs
of the neuron and tables when processing tile 0 of tables are shown.

of several tables. Then, a block can process the tiles sequen-
tially, and reload the tile data into the shared memory before
processing the next tile, which reduces the shared memory
usage to the tile size. Besides, if the number of neurons of
the previous layer is small, we can also fit the weight tile of
responsible neurons into the shared memory, which can not
only reduce the global memory access times, but also avoid
the random memory access due to the random permutation,
so that the kernel can fully utilize the memory bandwidth.

Algorithm 1 describes the detailed task of the LSH table
construction for one thread. __syncthreads() is a barrier
that synchronizes all threads in a block, and we use it to
ensure that threads can access the shared memory correctly.
The barrier at Line 9 avoids the case that some threads
access the shared memory before other threads load it
from global memory. The barrier at Line 18 ensures that
the shared memory is updated after all threads finish the
computation of the iteration.

Algorithm 1 LSH table construction
Input: weights W , permutations Θ
Output: LSH tables HT

1: procedure CONSTRUCTIONKERNEL
2: Wt ← getBlockTileW(W, blockIdx)
3: Ws,t ← loadToSharedMem(Wt)
4: n← getResponsibleNeuron(threadIdx)
5: Ws,n ← getNeuronW(Ws,t, n)
6: for each tile HTt in HT do
7: Θt ← getTblTheta(Θ, HTt)
8: Θs,t ← loadToSharedMem(Θt)
9: __syncthreads()

10: HTr ← getResponsibleTbl(HTt, threadIdx)
11: for each tbl in HTr do
12: Θs,tbl ← getTblTheta(Θs,t, tbl)
13: bucketIdx← 0
14: for each θ in Θs,tbl do
15: h← Hwta(Ws,n, θ)
16: concat(bucketIdx, h)
17: addToTblBucket(tbl, bucketIdx, n)
18: __syncthreads()

Active neuron query. The active neuron query proce-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

dure is illustrated in Figure 8, which takes one row in a
batch as an example. The left matrix in the figure is the
transpose of the activation matrix. The query operation
takes the neurons’ activation values of the previous layer as
input, and similar to the construction operation, it computes
the corresponding bucket indices in all hash tables. After
getting the selected table buckets, we union all neurons in
these buckets and count the frequency of those neurons for
further sampling by threshold.

19 26 8 17

Θ

Batch
Size

1 1, 8, 7

2 1, 8

Neuron 1 8 7

Frequency 2 2 1

Threshold = 2

1 8

Activations

Active Neurons

Fig. 8. An example of active neuron query.

For the bucket computing stage, we can use a similar
method to that deployed in the table construction operation,
while turning the weight matrix into the batch of activation
values. However, the scale of batch size is always much less
than the neuron number of the sparse layer. Hence, using
multiple blocks to divide the batch seems to be improper.
Instead, a block is utilized to handle only a tile of hash tables
and compute the bucket indices for the entire batch in these
tables.

For the union and sub-sampling stage, SLIDE uses the
data structure of a linked hash table to count the frequency
of neurons. However, this data structure is missing in
Nvidia’s Thrust library [30]. Note that this hash table is
unlike the LSH tables, as we need to cooperate with the
dependence when adding an item to the table. To deal with
this problem, we develop an intra-block mutex to protect
the critical section, shown in Algorithm 2, by using atomic
operations [29] such as atomicCAS (compare and swap) at
Line 6 in CUDA. Instead of spinning to acquire the mutex,
we use a barrier at Line 11 to ensure that all threads in
the block are in the same iteration, and a thread failing to
hold the mutex will give up to wait for the next iteration.
This design avoids the possibility of deadlock, and we
show an example of the incorrect spinlock in Algorithm 3.
This example will lead to a deadlock because the threads
spinning can occupy the resources so that threads holding
the mutex cannot be scheduled.

With this intra-block mutex, we can then develop the
block-level thread-safe linked hash table on the GPU. The
linked hash table on the CPU needs to malloc a new list
node when inserted into a bucket, but this operation is very
inefficient on the GPU. Instead, we maintain a memory pool
so that each time a new list node needs to be allocated,
we atomically acquire it from the pool. Figure 9 shows the
GPU simulation of the data structure of the linked hash
table, where the green and yellow cells represent the linked
lists of two buckets, respectively. The lists are linked by the

Algorithm 2 A simple intra-block mutex
1: do
2: if threadIdx is 0 then
3: blockStop← true
4: __syncthreads()
5: if isJobFinished(threadIdx) then
6: if atomicCAS(mutex, 0, 1) is 0 then
7: doCriticalJob(threadIdx)
8: atomicExch(mutex, 0) ▷ release the mutex
9: else ▷ Other thread hold the mutex, wait for next

iteration
10: blockStop← false
11: __syncthreads()
12: while not blockStop

Algorithm 3 An incorrect mutex
1: while atomicCAS(mutex, 0, 1) is not 0 do ▷ This code

will cause dead lock!
2: pass
3: doCriticalJob(threadIdx)
4: atomicExch(mutex, 0)

corresponding value of each entry in the Next array, which
represents the position of the next entry in the memory pool.
Each bucket is protected by an individual mutex, and the
mutex is only acquired when we need to insert a new item
into the list. To aggregate the neurons in those L buckets,
each thread in the block adds multiple neurons to the hash
table. The thread first probes the corresponding bucket,
where the entries are linked by the Next array. If the neuron
to be added already has an entry in the table, then the thread
only needs to update the entry value atomically. Otherwise,
the mutex of the bucket is required to ensure that a new
item is safely inserted at the end of the bucket list. To avoid
a race condition, the thread needs to examine the end of the
list again after gaining the mutex. If the thread is unable to
acquire the mutex, the stop flag of the block should be unset
and the thread needs to wait for the next iteration. Note
that a thread that fails to acquire the mutex also saves its
current position in the list, allowing it to begin the probing
process from this position rather than the head of the list in
the next iteration. This fine-grained lock mechanism enables
more parallelism than a coarse-grained lock mechanism for
the whole table.

Then, utilizing this block-level hash table, we can launch
a kernel whose block number is equal to the batch size, so
that we can process the whole batch in parallel. By choosing
the proper table size and hash function, we can make the
conflicts rare and achieve high performance.

Storage of the tables. The space cost of the L LSH tables
can be expensive. Suppose each table has B buckets, the size
of each bucket is b, and the size of each permutation bin is
d. Then, we have to allocate L(Bb+Kd) memory space on
the GPU, while the memory size on the GPU side is much
smaller than that on the CPU side. Even worse, we also need
to prepare enough memory space for linked hash tables
with memory pools. To deal with this problem, we propose
using the unified memory model introduced in CUDA 6.0.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

0 0 0 0 0

-1 0 -1 1 -1 2 -1 -1 -1 -1

Mutex

Next

Entry

Memory Pool

Fig. 9. The schema of the linked hash table on the GPU with mutexes
and a memory pool to handle conflicts.

Unified memory is a single address space accessible by both
CPUs and GPUs in the same system [29]. GPUs with Pascal
and later architectures further introduce the hardware page
faulting and migration features, so the unified memory can
indeed be allocated only when threads access it, rather than
when we call the API of cudaMallocManaged(). This de-
mand paging property makes the unified memory suitable
for G-SLIDE, because we only use a small proportion of the
total table memory.

4.4 Sparse Network Training
In this part, we show our design of the sparse neural
network training on the GPU, which contains the for-
ward/backward propagation and weight update.

Forward propagation. In typical neural networks, the
primary operation in forward propagation is matrix mul-
tiplication, which already has efficient solutions in the
cuBLAS [31] library. However, although the sparsity in
SLIDE can significantly reduce the computation, it makes
the traditional matrix multiplication method not applicable.

Figure 10 shows an example of the computations in
forward propagation. The left matrix in Figure 10 (a) is
the transpose of the previous layer’s activations of a batch,
denoted as AT

l−1, while its right matrix is this layer’s,
denoted as AT

l . The upper one is the transpose of the weight
matrix, denoted as WT . In dense neural networks, we will
figure out the matrix of AT

l by simply multiplying AT
l−1 and

WT (with further bias addition and activation function).
However, the situation in G-SLIDE is more complicated.
First, in G-SLIDE, both the input matrix AT

l−1 and the output
matrix AT

l can be sparse, and the indices of the active cells
in AT

l are determined by the LSH sparsification module
prior to the forward computation. As a result, existing tools
aimed at general matrix multiplication such as cuBLAS [31]
and sparse matrix multiplication such as cuSPARSE [32]
all fail to handle this unique feature. Second, the active
neurons also vary for each row in AT

l−1 and AT
l , as shown in

Figure 10 (a) and (b). Hence, this forward process cannot be
regarded as a sub-matrix multiplication. Third, the cells in
the weight matrix WT are activated according to AT

l−1 and
AT

l , and it is not appropriate to compress the weight matrix
WT for quick retrieval. The sparse accesses are therefore
unavoidable. As far as we know, there are no efficient
existing methods on the GPU designed for this special case.

For processing each row of the activation matrix, we
compute the inner-product of an activation vector with a
sub-matrix of WT . Hence, we use one block to perform this
row-vector - matrix multiplication. Similar to the design in
the LSH table construction, we divide one row of the out-
puts into many tiles, and the responsible block will process

Batch
Size

𝑊𝑇

Batch
Size

𝑊𝑇

𝐴𝑙−1
𝑇 𝐴𝑙−1

𝑇𝐴𝑙
𝑇 𝐴𝑙

𝑇

(a) Computation for the first row.

Batch
Size

𝑊𝑇

Batch
Size

𝑊𝑇

𝐴𝑙−1
𝑇 𝐴𝑙−1

𝑇𝐴𝑙
𝑇 𝐴𝑙

𝑇

(b) Computation for the second row.

Fig. 10. An example of the computations in forward propagation. The
green and yellow cells represent the active neurons and corresponding
weights for the two different rows in a batch.

the tiles sequentially. For each tile, we use one thread in the
block to compute the activation of one active output neuron,
which is the inner product of two vectors. As each thread in
the block needs to read the previous activation values in the
same row, we consider using shared memory to cache them.

Softmax activation. For Softmax activation, we need to
perform maximum element search and summation, which
are both reduction operations. We use one block to process
the activations of a row as well, and utilize the warp shuffle
technology [29] to realize efficient parallel reduction across
a block. For ordinary neural networks, it is impractical to
load the total row of activations into the shared memory.
However, in G-SLIDE, benefiting from the extreme sparsity
of the network, we only need to process a few neurons,
which enables us to hold the total row in shared memory.

Kernel fusion. Fusing kernels properly can not only
decrease the kernel launch time, but also reduce the global
memory access cost significantly. As we mentioned before,
in Softmax activation, we can cache an entire row thanks
to the sparsity of neurons. Hence, after we multiply the
previous activations and the weights, we can directly out-
put the values to the shared memory for further Softmax
activation, rather than writing back to global memory and
reading again using another kernel.

The pseudo-code of Softmax forward kernel after fusion
is shown in Algorithm 4. The function blockReduce() in
Lines 10 and 12 performs the parallel reduction mentioned
before, with the parameter op determining the reduction op-
eration. The function blockTransform() in Lines 11 and 13
means that we use the block to perform the transform
defined by the anonymous function parameter f for each el-
ement in an array. During training, we even merge the error
and gradient computation function into the kernel, which
is not contained in the algorithm but further improves the
performance.

Backward propagation. Similar to forward propagation,
we use one block responsible for one rows’ correspond-
ing error propagation. As SLIDE points out, for backward
propagation, we do not need to access non-active neurons
and their corresponding weights [3]. Therefore, we can still
cache both two rows of active neurons in two layers. SLIDE
uses HOGWILD [17] to make gradient updates in parallel.
In G-SLIDE, we use the atomic operation to maintain the
consistency of gradients among the rows in a batch, which
avoids the costly memory copy in SLIDE.

Weight update. After the backward propagation of a



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Algorithm 4 Forward propagation with Softmax activation

Input: weights WT , biases BT , previous layer’s activa-
tions AT

l−1

Output: this layer’s activations AT
l

1: procedure SOFTMAXFOWARDKERNEL
2: Rowl−1 ← getRow(AT

l−1, blockIdx)
3: Rows,l−1 ← loadToSharedMem(Rowl−1)
4: Rows,l ← loadToSharedMem(BT ) ▷

initialize this layer’s activation on shared memory with
the value of biases

5: for each tile Rows,t,l in Rows,l do
6: aref ← getResponsibleARef(Rows,t,l, threadIdx)
7: Wc ← getCorrespondW(WT , Rows,l−1)
8: aref ← innerProduct(Wc, Rows,l−1)

9: __syncthreads()
10: amax ← blockReduce(Rows,l, op = max)
11: blockTransform(Rows,l, f = lambda a: exp(a −

amax))
12: asum ← blockReduce(Rows,l, op = sum)
13: blockTransform(Rows,l, f = lambda a: a/asum)
14: flushToGlobalMem(Rows,l, A

T
l , blockIdx)

batch, we update the total weights with the Adam opti-
mizer [33]. The reconstruction of LSH tables after weight
updates is also required, but the reconstruction operation is
quite expensive. Therefore, we do not reconstruct the hash
tables for every batch, but with a certain frequency instead.
As SLIDE indicates [3], the frequency with exponential
decay is also preferred.

Adaptive kernel selection. Using shared memory prop-
erly can significantly reduce the access overhead of global
memory. However, the size of shared memory on the GPU
is limited. The kernels using shared memory can fail to be
launched if the scale of the data exceeds the threshold. To
address this issue, we also develop kernels using little or
no shared memory in G-SLIDE, and adaptively select the
proper kernels to launch depending on the data scale as
well as the available shared memory.

5 EVALUATION

5.1 Experimental Setup

In this part, we illustrate the evaluated methods, platforms,
datasets, and hyper-parameters used in the experiments.

Evaluated methods. We use the same fully-connected
neural network as in [3] for evaluation. We compare the
proposed G-SLIDE system on GPUs with three solutions.
The first one is SLIDE [3], denoted as “SLIDE”. The second
one is the TensorFlow implementation on CPUs, denoted as
“TF-CPU”. The third one is the TensorFlow implementation
on GPUs, denoted as “TF-GPU”. The source codes of these
three solutions are all provided in [3].

Platform for G-SLIDE and TF-GPU. The experimental
platform for G-SLIDE and TF-GPU is a server that consists
of an 8-core/16-thread Intel(R) Core(TM) i9-9900K CPU at
3.60GHz and an NVIDIA GeForce RTX 2080 Ti graphics
card. The GeForce RTX 2080 Ti GPU is powered by the

Turing GPU architecture and the RTX platform, and this ar-
chitecture is widely used for high-performance computing.
This graphics card has 4,352 GPU cores, and its theoretical
maximum floating-point performance is 28.5 TFLOPS (tera
floating-point operations per second). The GPU integrates
an 11GB GDDR6, and the memory bandwidth can reach 616
GB/s. The operating system we use is Ubuntu 20.04.2 LTS.
The CUDA Toolkit versions for G-SLIDE and TF-GPU are
11.1 and 10.2, respectively. The cuDNN version for TF-GPU
is 7.6.4.

Platform for SLIDE and TF-CPU. For fair comparisons,
we rent a powerful server with a 32-core/64-thread In-
tel(R) Xeon(R) Platinum 8369B CPU at 2.70GHz on Alibaba
Cloud [34] to evaluate SLIDE and TF-CPU.

Datasets. We evaluate G-SLIDE and other solutions on
two real datasets from the Extreme Classification Reposi-
tory [28]. Amazon-670K is a publicly available real-world
dataset for product-to-product recommendation with 670K
labels. The prediction task in Amazon-670K is to recom-
mend products that the user might be interested in out
of all 670K products, with a given interested product.
WikiLSHTC-325K is a dataset extracted from Wikipedia
with 325K labels. The statics of these datasets are shown
in Table 1.

TABLE 1
Dataset statistics.

Dataset #Features #Labels #Train Points #Test Points

Amazon-670K 135,909 670,091 490,449 153,025
WikiLSHTC-325K 1,617,899 325,056 1,778,351 587,084

Hyperparameters. We use a fully-connected neural net-
work model with a hidden dense layer of 128 neurons on
both the Amazon-670K and WikiLSHTC-325K datasets. For
Amazon-670K, we choose K = 6, L = 50, and 256 as
the batch size. For WikiLSHTC-325K, we choose K = 5,
L = 350, and 128 as the batch size. For both datasets,
we reconstruct the LSH tables after training every 6,400
samples.

5.2 Results
In this part, we show the performance and accuracy results
of G-SLIDE compared with the other baselines.

Time-wise accuracy of G-SLIDE. The time-wise accu-
racy plots of G-SLIDE on Amazon-670K and WikiLSHTC-
325K are shown in Figure 11 (a) and (b), respectively. The
training time on WikiLSHTC-325K is much longer than that
of Amazon-670K due to its larger training set.

Epoch-wise time comparison. We measure the time
consumed over epochs of G-SLIDE, SLIDE, TF-CPU, and
TF-GPU, and show the results in Figure 12. We observe
that G-SLIDE is significantly faster than SLIDE, TF-CPU,
and TF-GPU on both datasets, which proves our idea of
benefiting from both the adaptive sparsity of the neural
network and the computing capability of the GPU. The
detailed average one-epoch speedups over different solu-
tions are presented in Table 2. There are three major reasons
that make the speedups on WikiLSHTC-325K much smaller



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0

20

40

60

80

100

0 500 1000

ac
cu

ra
cy

 (%
)

time (s)

(a) Amazon-670K

0

20

40

60

80

100

0 5000 10000 15000

ac
cu

ra
cy

 (%
)

time (s)

(b) WikiLSHTC-325K

Fig. 11. Time-wise accuracy of G-SLIDE.

than the speedups on Amazon-670K. First, the sparsity of
the network for Amazon-670K is greater than WikiLSHTC-
325K, so more computations can be saved. Second, some
fast kernels used on Amazon-670K cannot be launched on
WikiLSHTC-325K due to the limited size of shared memory
on the GPU. Accordingly, we need to access the slow global
memory repeatedly without caching on WikiLSHTC-325K.
Third, the greater number of active neurons on WikiLSHTC-
325K leads to a longer active neuron query time.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10

tim
e 

(s
)

epoch

G-SLIDE TF-CPU TF-GPU SLIDE

(a) Amazon-670K

1

10

100

1000
10000

100000

1000000

1 2 3 4 5 6 7 8 9 10

tim
e 

(s
)

epoch

G-SLIDE TF-CPU TF-GPU SLIDE

(b) WikiLSHTC-325K

Fig. 12. Time consumed over epochs of G-SLIDE, SLIDE, TF-CPU, and
TF-GPU.

TABLE 2
Average one-epoch speedups of G-SLIDE over different solutions.

Dataset SLIDE TF-GPU TF-CPU

Amazon-670K 11.9× 25.6× 48.9×
WikiLSHTC-325K 20.8× 6.8× 12.7×

Epoch-wise accuracy comparison. We show the epoch-
wise comparison between G-SLIDE and SLIDE, TF-CPU,
and TF-GPU in Figure 13. We observe that the accuracy
of G-SLIDE and SLIDE are very close to TF-CPU and TF-
GPU, which is also indicated in [3]. After convergence,
we can achieve about 90% accuracy of TensorFlow. The
slight accuracy loss can come from the selected activation of
neurons, which are figured out by querying the LSH hash
tables. Besides, the parallel computation on the GPU is not
the same as the sequential computing on the CPU due to the
floating-point precision issue.

5.3 Detailed Analysis
We present a detailed analysis of the time for different parts
of the G-SLIDE training process. We partition the execution
process into several parts and show the time of each part
within a batch in Figure 14. The whole process includes
two forward propagation phases (denoted as “FW0” and

0
20
40
60
80

100

1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

 (%
)

epoch

G-SLIDE TF-CPU TF-GPU SLIDE

(a) Amazon-670K

0
20
40
60
80

100

1 2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

 (%
)

epoch

G-SLIDE TF-CPU TF-GPU SLIDE

(b) WikiLSHTC-325K

Fig. 13. Accuracy over epochs of G-SLIDE, SLIDE, TF-CPU, and TF-
GPU.

“FW1”), backward propagation phases (denoted as “BP0”
and “BP1”), weight update phases (denoted as “UD0” and
“UD1”), active neuron query of LSH tables (denoted as
“LSH QR”), and reconstructions of LSH tables (denoted as
“LSH RC”). LSH table reconstructions are time-consuming.
However, as discussed in Section 4.4, we do not need to
reconstruct the tables for each batch, and thus its time
cost can be balanced across multiple batches. Therefore, in
Figure 14, we use the reconstruction time divided by the
batch interval instead of the actual time.

0

2

4

6

8

FW
0

FW
1

BP1
BP0
UD0
UD1
LSH QY
LSH RC

tim
e 

(m
s)

(a) Amazon-670K

0

5

10

15

20

FW
0

FW
1

BP1
BP0
UD0
UD1
LSH QY
LSH RC

tim
e 

(m
s)

(b) WikiLSHTC-325K

Fig. 14. Time for each part in a batch.

First, we observe that weight updates are costly on both
datasets. The reason is that for weight update, we need
to update the total weight matrix with Adam optimizer
for each batch, while forward and backward propagation
involves only the active neurons and their corresponding
weights. Our analysis shows that about half of the time cost
comes from the global memory accesses, while the other half
is from the floating-point division. If we replace the division
in the kernel with a low precision division, we can further
reduce the overhead of weight update by nearly 50%.

Second, we also find that the most time-consuming part
on WikiLSHTC-325K is LSH QY. This is because we set L
a high value of 350 and it takes a long time to aggregate
the selected neurons of those L LSH tables. The phases of
FW1 and BP1 are also relatively expensive on WikiLSHTC-
325K compared to Amazon-670K due to the lower network
sparsity and the random accesses on global memory, which
is also mentioned in Section 5.2.

Third, for forward and backward propagation on both
datasets, we observe that the major overheads come from
the last Softmax layer. This result is intuitive as the com-
putation of this layer is more complicated than the hidden
one, and the number of active neurons in this layer is also
much larger than that of the sparse input features. The same
phenomenon is observed in [3].



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

5.4 Discussion
In this part, we discuss the application scenarios and the
limitations of G-SLIDE, and summarize our findings based
on experiments.

Application scope. G-SLIDE sparsifies the neural net-
works adaptively using LSH-based randomized hashing
and gains significant acceleration due to the computation
savings on sparse layers. Hence, G-SLIDE is suitable for
networks with wide layers and large sparse datasets. Be-
sides, G-SLIDE is also designed for those resource-constraint
scenarios. Researchers and companies without powerful
hardware can train their huge network models in a very
short time by using a single modest GPU with the help of
G-SLIDE.

Limitations. There are two major limitations to current
G-SLIDE. The first limitation is that G-SLIDE only targets
fully connected layers currently similar to SLIDE. In the
future, we will exploit the adaptive sparsity for more types
of networks, such as convolutional neural networks. The
second one is that G-SLIDE only focuses on a single GPU.
To further improve the performance and scalability of G-
SLIDE, we will extend G-SLIDE to support multi-GPU
training.

Summary of findings. From the experiments, we have
the following findings. First, combining LSH-based adap-
tive sparsification and GPU parallelism can result in signifi-
cant performance improvements with close accuracy over
SLIDE and TensorFlow implementations. Second, when
the network is sparse enough, the active neurons can be
cached in the shared memory on the GPU, and G-SLIDE
can achieve high performance. Third, the major overheads
of forward and backward propagation come from the last
Softmax layer, and the weight update can be the most time-
consuming part if the network is extremely sparse.

6 RELATED WORK

Machine learning systems. Machine learning systems have
become a hot topic in recent years [35], [36], [37], [38],
[39], [40]. TensorFlow, PyTorch, and MXNet [41] are the
most common machine learning systems. Apache Spark [42]
is a popular large-scale data analytics engine, which has
been widely used for the acceleration of machine learning
applications [39], [40]. Researchers also proposed various
machine learning systems to achieve more efficient model
training and inference. Kalamkar et al. [37] accelerated the
training process of deep learning recommendation systems
on the CPU cluster. Mudigere et al. [43] proposed a co-
designed system utilizing both software and hardware for
the large-scale distributed training process of deep learning
recommendation models. These works aim to train large
recommendation models efficiently, whereas SLIDE [3], [6]
and G-SLIDE aim to utilize the adaptive sparsity of neural
networks. Besides, machine learning algorithms have been
adopted to improve system performance. Tang et al. [35],
[36] used machine learning algorithms in cloud computing
systems for fair resource allocation.

GPU acceleration of neural networks. Due to the in-
creasing development of neural networks and the high

computing capacity of GPUs, many research studies on
GPU acceleration of neural networks appear. Yao et al. [44]
proposed a fine-grained sparsity method for efficient neural
network inference on GPUs, called Balanced Sparsity. Cui et
al. [45] developed GeePS, a GPU parameter server enabling
scalable neural networks across distributed GPU systems.
Chen et al. [46], [47] proposed ParSecureML, a secure deep
learning acceleration system on GPUs.

LSH-based applications. Locality Sensitive Hashing
(LSH) is an effective clustering method deployed in various
applications. Shrivastava et al. [5] applied Asymmetric LSH
to perform the task of approximate maximal inner product
search. Ning et al. [48] proposed deep reuse, a method using
LSH to quickly retrieve the similarities among neuron vec-
tors to speed up the CNN inference. Pan et al. [49] developed
an efficient GPU-based LSH technique to compute approxi-
mate k-nearest neighbor. Different from the previous work,
in G-SLIDE, we use Winner Take All as our LSH function
and focus on LSH-based neural network sparsification.

Sparsity in neural networks. Our work utilizes the
sparsity in neural networks to accelerate the training and
inference processes. Researchers have done related work
on the discovery and development of sparsity in neural
networks. Makhzani et al. [1], [2] observed that during every
gradient update process, the neural network training can
achieve high accuracy by ignoring most of the neurons
according to their activation. Srivastava et al. [50] found
that the method of selecting neurons sparsely in the neural
network training process can achieve even higher accuracy
due to implicit regularization. To further utilize the above
sparsity feature in neural networks, Spring et al. [4] em-
ployed LSH to find a sparse set of neurons that needed to
be activated, which is both efficient and valid. However,
they did not achieve much improvement with this method
compared with the method accelerated by hardware. SLIDE
is proposed by Chen et al. [3], utilizing sparsity to perform
neural network training and inference with high accuracy
and efficiency.

7 CONCLUSION

There is currently no efficient GPU implementation of
SLIDE. We find it a great opportunity to further improve
the performance of SLIDE and propose G-SLIDE to fill this
gap. G-SLIDE takes advantage of sparsity in large neural
networks with smart LSH algorithms and data structures
targeting GPUs. This paper expounds on how those specific
designs and optimizations of GPUs are invented and imple-
mented to better utilize the GPUs’ computing capacity. Ex-
periments show that G-SLIDE achieves 16.4× speedup over
SLIDE, 30.8× over the TensorFlow solution on CPU, and
16.2× over the TensorFlow solution on GPU. This proves the
huge potential of applying GPUs for sparse neural network
acceleration with special designs.

REPRODUCIBILITY

We support reproducible science. G-SLIDE is available on
GitHub (https://github.com/PanZaifeng/G-SLIDE), Mu-
lan Open Source Community (https://code.mulanos.cn/
MLbg3lrmuz/G-SLIDE), and Code Ocean.

https://github.com/PanZaifeng/G-SLIDE
https://code.mulanos.cn/MLbg3lrmuz/G-SLIDE
https://code.mulanos.cn/MLbg3lrmuz/G-SLIDE


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (No. 2018YFB1004401),
National Natural Science Foundation of China (61732014,
62172419, and 61802412), and GHfund A (No. 20210701).
This work is also sponsored by Alibaba Group through
Alibaba Innovative Research (AIR) Program. Feng Zhang
is the corresponding author of this paper.

REFERENCES

[1] A. Makhzani and B. Frey, “K-sparse autoencoders,” arXiv preprint
arXiv:1312.5663, 2013.

[2] A. Makhzani and B. J. Frey, “Winner-take-all autoencoders,” Ad-
vances in neural information processing systems, vol. 28, pp. 2791–
2799, 2015.

[3] B. Chen, T. Medini, J. Farwell et al., “SLIDE: In defense of smart
algorithms over hardware acceleration for large-scale deep learn-
ing systems,” Proceedings of Machine Learning and Systems, vol. 2,
pp. 291–306, 2020.

[4] R. Spring and A. Shrivastava, “Scalable and sustainable deep
learning via randomized hashing,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2017, pp. 445–454.

[5] A. Shrivastava and P. Li, “Asymmetric LSH (ALSH) for sublin-
ear time maximum inner product search (MIPS),” arXiv preprint
arXiv:1405.5869, 2014.

[6] S. Daghaghi, N. Meisburger, M. Zhao et al., “Accelerating SLIDE
deep learning on modern CPUs: Vectorization, quantizations,
memory optimizations, and more,” Proceedings of Machine Learning
and Systems, vol. 3, 2021.

[7] J. D. Owens, M. Houston, D. Luebke et al., “GPU computing,”
Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[8] F. Zhang, J. Zhai, B. He et al., “Understanding co-running behav-
iors on integrated CPU/GPU architectures,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 3, pp. 905–918, 2016.

[9] F. Zhang, Z. Pan, Y. Zhou et al., “G-TADOC: Enabling efficient
GPU-based text analytics without decompression,” in 2021 IEEE
37th International Conference on Data Engineering (ICDE). IEEE,
2021, pp. 1679–1690.

[10] Z. Pan, F. Zhang, Y. Zhou et al., “Exploring data analytics without
decompression on embedded GPU systems,” IEEE Transactions on
Parallel and Distributed Systems, 2021.

[11] A. Z. Broder, M. Charikar, A. M. Frieze et al., “Min-wise inde-
pendent permutations,” Journal of Computer and System Sciences,
vol. 60, no. 3, pp. 630–659, 2000.

[12] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in VLDB, vol. 99, no. 6, 1999, pp. 518–
529.

[13] J. Yagnik, D. Strelow, D. A. Ross et al., “The power of comparative
reasoning,” in 2011 International Conference on Computer Vision.
IEEE, 2011, pp. 2431–2438.

[14] B. Chen and A. Shrivastava, “Densified winner take all (WTA)
hashing for sparse datasets,” in Uncertainty in artificial intelligence,
2018.

[15] P. Indyk and R. Motwani, “Approximate nearest neighbors: to-
wards removing the curse of dimensionality,” in Proceedings of the
thirtieth annual ACM symposium on Theory of computing, 1998, pp.
604–613.

[16] Q. Lv, W. Josephson, Z. Wang et al., “Multi-probe LSH: efficient
indexing for high-dimensional similarity search,” in 33rd Interna-
tional Conference on Very Large Data Bases, VLDB 2007. Association
for Computing Machinery, Inc, 2007, pp. 950–961.

[17] F. Niu, B. Recht, C. Ré et al., “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,” arXiv preprint
arXiv:1106.5730, 2011.

[18] K. He, X. Zhang, S. Ren et al., “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] S. Tang, C. Wang, J. Nie et al., “EDL-COVID: Ensemble Deep
Learning for COVID-19 Cases Detection from Chest X-Ray Im-
ages,” IEEE Transactions on Industrial Informatics, 2021.

[20] Q. Cao, W. Zhang, and Y. Zhu, “Deep learning-based classification
of the polar emotions of “moe”-style cartoon pictures,” Tsinghua
Science and Technology, vol. 26, no. 3, pp. 275–286, 2021.

[21] K. Zhu and T. Zhang, “Deep reinforcement learning based mo-
bile robot navigation: A review,” Tsinghua Science and Technology,
vol. 26, no. 5, pp. 674–691, 2021.

[22] H. Huang, J. Lin, L. Wu et al., “Machine learning-based multi-
modal information perception for soft robotic hands,” Tsinghua
Science and Technology, vol. 25, no. 02, pp. 255–269, 2020.

[23] F. Zhang, J. Zhai, X. Shen et al., “TADOC: Text analytics directly on
compression,” The VLDB Journal, vol. 30, no. 2, pp. 163–188, 2021.

[24] F. Zhang, J. Zhai, X. Shen et al., “POCLib: A High-Performance
Framework for Enabling Near Orthogonal Processing on Com-
pression,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 2, pp. 459–475, 2022.

[25] S. C. K. Tekouabou, S. Hartini, Z. Rustam et al., “Improvement
in automated diagnosis of soft tissues tumors using machine
learning,” Big Data Mining and Analytics, vol. 4, no. 1, pp. 33–46,
2021.

[26] A. Guezzaz, Y. Asimi, M. Azrour et al., “Mathematical validation of
proposed machine learning classifier for heterogeneous traffic and
anomaly detection,” Big Data Mining and Analytics, vol. 4, no. 1,
pp. 18–24, 2021.

[27] J. Devlin, M.-W. Chang, K. Lee et al., “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[28] K. Bhatia, K. Dahiya, H. Jain et al., “The extreme
classification repository: Multi-label datasets and code,”
2016. [Online]. Available: http://manikvarma.org/downloads/
XC/XMLRepository.html

[29] D. Guide, “CUDA C programming guide,” NVIDIA, July, vol. 29,
p. 31, 2013.

[30] N. Bell and J. Hoberock, “Thrust: A productivity-oriented library
for CUDA,” in GPU computing gems Jade edition. Elsevier, 2012,
pp. 359–371.

[31] Nvidia, “cuBLAS :: CUDA Toolkit Documentation.” [Online].
Available: https://docs.nvidia.com/cuda/cublas/index.html

[32] Nvidia, “cuSPARSE :: CUDA Toolkit Documentation.” [Online].
Available: https://docs.nvidia.com/cuda/cusparse/index.html

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[34] Alibaba, “Alibaba cloud.” [Online]. Available: https://www.
alibabacloud.com

[35] S. Tang, B.-S. Lee, and B. He, “Fair resource allocation for data-
intensive computing in the cloud,” IEEE Transactions on Services
Computing, vol. 11, no. 1, pp. 20–33, 2016.

[36] S. Tang, Z. Niu, B. He et al., “Long-term multi-resource fairness for
pay-as-you use computing systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 5, pp. 1147–1160, 2018.

[37] D. Kalamkar, E. Georganas, S. Srinivasan et al., “Optimizing deep
learning recommender systems training on CPU cluster archi-
tectures,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[38] J. Sun, G. Sun, S. Zhan et al., “Automated performance modeling
of HPC applications using machine learning,” IEEE Transactions on
Computers, vol. 69, no. 5, pp. 749–763, 2020.

[39] X. Meng, J. Bradley, B. Yavuz et al., “Mllib: Machine learning in
apache spark,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 1235–1241, 2016.

[40] S. Tang, B. He, C. Yu et al., “A survey on spark ecosystem: Big data
processing infrastructure, machine learning, and applications,”
IEEE Transactions on Knowledge and Data Engineering, 2020.

[41] T. Chen, M. Li, Y. Li et al., “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv
preprint arXiv:1512.01274, 2015.

[42] M. Zaharia, M. Chowdhury, M. J. Franklin et al., “Spark: Cluster
computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95,
2010.

[43] D. Mudigere, Y. Hao, J. Huang et al., “Software-hardware co-
design for fast and scalable training of deep learning recommen-
dation models,” 2021.

[44] Z. Yao, S. Cao, W. Xiao et al., “Balanced sparsity for efficient
DNN inference on GPU,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 5676–5683.

[45] H. Cui, H. Zhang, G. R. Ganger et al., “Geeps: Scalable deep
learning on distributed GPUs with a gpu-specialized parameter
server,” in Proceedings of the Eleventh European Conference on Com-
puter Systems, 2016, pp. 1–16.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://www.alibabacloud.com
https://www.alibabacloud.com


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[46] Z. Chen, F. Zhang, A. C. Zhou et al., “ParSecureML: An efficient
parallel secure machine learning framework on GPUs,” in 49th
International Conference on Parallel Processing-ICPP, 2020, pp. 1–11.

[47] F. Zhang, Z. Chen, C. Zhang et al., “An efficient parallel secure
machine learning framework on GPUs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 9, pp. 2262–2276, 2021.

[48] L. Ning and X. Shen, “Deep reuse: streamline CNN inference on
the fly via coarse-grained computation reuse,” in Proceedings of the
ACM International Conference on Supercomputing, 2019, pp. 438–448.

[49] J. Pan and D. Manocha, “Fast GPU-based locality sensitive hashing
for k-nearest neighbor computation,” in Proceedings of the 19th
ACM SIGSPATIAL international conference on advances in geographic
information systems, 2011, pp. 211–220.

[50] N. Srivastava, G. Hinton, A. Krizhevsky et al., “Dropout: a simple
way to prevent neural networks from overfitting,” The journal of
machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

Zaifeng Pan received the bachelor degree from
Shanghai Jiao Tong University in 2021, and he
is pursuing the master degree in computer sci-
ence at Renmin University of China, advised by
prof. Feng Zhang. His current research interests
include parallel computing and heterogeneous
computing.

Feng Zhang received the bachelor degree from
Xidian University in 2012, and the PhD degree
in computer science from Tsinghua University in
2017. He is an associate professor with the Key
Laboratory of Data Engineering and Knowledge
Engineer (MOE), Renmin University of China.
His major research interests include high perfor-
mance computing, big data systems, and paral-
lel and distributed systems.

Hourun Li is an undergraduate in School of In-
formation, Renmin University of China. He joined
the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE) in 2021.

Chenyang Zhang is an undergraduate in School
of Information, Renmin University of China. She
joined the Key Laboratory of Data Engineer-
ing and Knowledge Engineering (MOE) in 2019.
Her research interests include big data manage-
ment, heterogeneous computing, and machine
learning systems.

Xiaoyong Du obtained the B.S. degree from
Hangzhou University, Zhejiang, China, in 1983,
the M.E. degree from Renmin University of
China, Beijing, China, in 1988, and the Ph.D.
degree from Nagoya Institute of Technology,
Nagoya, Japan, in 1997. He is currently a profes-
sor with the School of Information, Renmin Uni-
versity of China. His current research interests
include databases and intelligent information re-
trieval.

Dong Deng received the bachelor degree from
Beihang University in 2011 and PhD degree in
computer science from Tsinghua University in
2016. He is an assistant professor in the Com-
puter Science Department at Rutgers University
- New Brunswick. His research interests include
data management, database system, data cura-
tion, and data-centric AI.


	Introduction
	Background
	Graphics Processing Unit (GPU)
	Locality Sensitive Hashing (LSH)
	Sub-Linear Deep learning Engine (SLIDE)

	Motivation and Challenges
	Motivation
	Challenges

	G-SLIDE System
	General Design
	Data Format
	LSH Sparsification
	Sparse Network Training

	Evaluation
	Experimental Setup
	Results
	Detailed Analysis
	Discussion

	Related Work
	Conclusion
	References
	Biographies
	Zaifeng Pan
	Feng Zhang
	Hourun Li
	Chenyang Zhang
	Xiaoyong Du
	Dong Deng


