
RecFlex: Enabling Feature Heterogeneity-Aware
Optimization for Deep Recommendation Models

with Flexible Schedules
Zaifeng Pan∗§, Zhen Zheng†, Feng Zhang∗, Bing Xie†, Ruofan Wu∗§, Shaden Smith†,

Chuanjie Liu†, Olatunji Ruwase†, Xiaoyong Du∗, Yufei Ding‡
∗Renmin University of China, †Microsoft, ‡University of California, San Diego

{panzaifeng,fengzhang,ruofanwu,duyong}@ruc.edu.cn
{zhengzhen,bingxie,shadensmith,chuanli,olruwase}@microsoft.com

yufeiding@ucsd.edu

Abstract—Industrial recommendation models typically involve
numerous feature fields. The embedding computation workloads
are heterogeneous across these fields, thus requiring varied op-
timal code schedules. While existing solutions apply basic fusion
optimization for embedding operations, they inefficiently treat
all feature fields with identical schedules, leading to suboptimal
performance. In this paper, we introduce RecFlex, which gen-
erates fused kernels with distinct schedules for different feature
fields. RecFlex employs the interference-aware schedule tuner to
tune schedules and the heterogeneous schedule fusion compiler
to generate fused kernels, addressing two major challenges. To
determine optimal schedules of different feature fields within
the fused kernel, RecFlex proposes a two-stage interference-
simulated tuning strategy. To handle dynamic workloads that
challenge tuning and fusion, RecFlex combines compile-time
schedule tuning with runtime kernel thread mapping. RecFlex
surpasses state-of-the-art libraries and compilers, achieving av-
erage speedups of 2.64×, 20.77×, and 11.31× over TorchRec,
HugeCTR, and RECom, respectively. RecFlex is publicly avail-
able at https://github.com/PanZaifeng/RecFlex.

Index Terms—recommender system, machine learning com-
piler

I. INTRODUCTION

In recent years, deep recommendation models have been
extensively utilized across enterprises and business scenarios,
such as video rankings at Google Youtube [1], [2], online
advertising applications at Meta [3]–[5], and e-commerce at
Alibaba [6]–[10]. Unlike other prevalent deep neural networks
(DNNs), a typical recommendation model exhibits a distinctive
structure featuring two key parts: the embedding layers and
the DNN layers. Specifically, the embedding layer transforms
the inputs of different features1 (e.g., user IDs and product
IDs) into representative embedding vectors by performing
embedding table lookup and pooling operations. To achieve
high model quality, developers have incorporated hundreds
to thousands of features [11]–[13] into their models in pro-
duction. These features introduce numerous memory-intensive

§Work was done when Zaifeng and Rufan interned at Microsoft, advised
by Zhen.

1We use feature to represent feature field in this paper for abbreviation.

embedding operations, making the execution of embedding
layers quite time-consuming [12], [14].

Traditional machine learning (ML) frameworks [15], [16]
execute embedding operations (including embedding lookup
and pooling) separately for each feature, resulting in low GPU
utilization and significant GPU kernel launch overhead [12],
[14]. To tackle this performance problem, existing solutions
[12], [14], [17], [18] fuse the embedding operations through
manually written libraries or compilation optimization. These
works treat all features equally with identical code schedules2

in the fused kernel. However, we find that the numerous
features in an industrial recommendation model are hetero-
geneous, i.e., the computation workloads vary significantly
among features (detailed in Section II-A). Existing solutions
that apply a single code schedule for heterogeneous features
within a model lead to poor performance for most features.

Given the limitations of existing solutions, there is a poten-
tial to further optimize the embedding operations by generating
distinct schedules for different features according to their
workload characteristics. However, enabling this optimization
poses two major challenges. First, it is challenging to find
the optimal schedules of all features in the final fused kernel
of the embedding operations. Directly combining the best
schedule of each feature based on its separate latency will
fail to achieve the overall best performance due to interference
among schedules in the fused kernel. The interference includes
occupancy constraint, i.e., the maximum number of active
warps per streaming multiprocessor (SM), and resource con-
tention. Enumerating the schedule combinations of all features
is also impractical, as the search space is too large. Second, the
dynamic computation workloads of recommendation models
make both kernel fusion and schedule tuning challenging.
Existing code schedule generators and tuners [21]–[26] rely
on static workloads to guide thread mapping of the generated
kernels and optimal schedule identification.

2In the field of ML compilers and code generation, schedule [19], [20] refers
to how the code is organized to map to hardware, like the tiling approach,
thread mapping method, loop orders, etc.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

https://github.com/PanZaifeng/RecFlex

To this end, we propose RecFlex, a system that optimizes
the time-consuming embedding operations of recommendation
models by enabling feature heterogeneity-aware optimization
with flexible schedules. RecFlex comprises two key com-
ponents, the interference-aware schedule tuner and the het-
erogeneous schedule fusion compiler. The schedule tuner is
responsible for efficiently identifying the optimal schedules
for all features, while the fusion compiler generates the fused
GPU kernel based on the per-feature schedules.

To address the first challenge of optimal schedule identifica-
tion, RecFlex’s schedule tuner adopts a two-stage interference-
simulated strategy that accounts for inter-feature interference.
It first tunes the optimal per-feature schedule with different
occupancy constraint values in the local stage. This stage
involves controlling occupancy values explicitly to eliminate
the per-feature schedule’s dependency on the fused kernel
occupancy and padding thread blocks to simulate inter-feature
resource contention. Subsequently, in the global stage, it
further tunes the overall optimal occupancy value. To solve
the challenge of dynamic workloads, we propose a combined
approach. During compilation, we leverage the recent distri-
bution of historical inputs to tune generally optimal schedules
and update them periodically. At runtime, we analyze the input
workload on the host side to determine thread mapping, thus
averting GPU workload imbalances or resource wastage.

We integrate the fused kernel generated by RecFlex with
PyTorch [15] framework and evaluate RecFlex on recom-
mendation models and datasets synthesized based on our
observation of production models. Experimental results show
that compared to TorchRec [17], HugeCTR [18], and RECom
[12], the fused kernels generated by RecFlex achieve average
speedups of 2.64×, 20.77×, and 11.31×, respectively. We
summarize our contributions as follows:

• We reveal the feature heterogeneity in industrial deep
recommendation models and identify the limitations of
existing solutions.

• We propose RecFlex, a recommendation model opti-
mization system that enables feature heterogeneity-aware
optimization in the fused GPU kernels with flexible
schedules. To our knowledge, this is the first work to
discuss schedule tuning considering inter-schedule inter-
ference for horizontal fusion.

• Extensive experiments demonstrate the effectiveness of
our tuning strategy and showcase that RecFlex achieves
significant improvements over state-of-the-art baselines.

II. BACKGROUND AND MOTIVATION

A. Feature Heterogeneity of Recommendation Models
Deep recommendation models and embedding opera-

tions. As shown in Figure 1, a typical deep recommendation
model’s embedding layers contain a set of embedding tables,
which transform the input from various feature fields into rep-
resentative embedding vectors through embedding operations.
The embedding vectors are then concatenated to be fed into the
subsequent DNNs to predict the output value (e.g., the click-
through rate). The dotted rectangle in Figure 1 illustrates the

Embedding Table N

Embedding Table 1
…

Feature Field 1

Feature Field N

Inputs

D
N

N
s Output

Row 1
Row 2

Row 0

Row 3
Lookup IDs =

[1, 3]
Lookup Output

P
ooling

C
oncat

Embedding Operation of Feature Field N

Embed. Dim. Pooling Factor = 2

Fig. 1. A typical deep recommendation model architecture with N features.

0 20 40 60 80 100 120
Embedding Dimension

0
50

100
150
200
250

Fr
eq

ue
nc

y

(a) Embed. dimension distribution.

0 10 20 30 40 50
Sample ID

0

20

40

60

80

Po
ol

in
g

Fa
ct

or

Feature 0
Feature 1
Feature 2
Feature 3

(b) Pooling factor distribution.

Fig. 2. Embedding dimension and input workloads can vary significantly
among features.

embedding operations for feature N . An input sample of the
operation consists of single or multiple lookup IDs, which
are used to retrieve corresponding rows in the embedding
table. Then, the retrieved embedding vectors of the same
sample will be applied by a pooling operation (i.e., element-
wise reduction) to get the final lookup output. Production
recommendation models often contain thousands of features,
and the corresponding embedding operations can account for
most of the end-to-end execution time [11], [12].

Heterogeneity across features. By profiling the production
models deployed at real businesses, we observe that the
embedding table characteristics and input workloads vary
significantly among features. For a specific feature, we denote
the number of retrieved embedding vectors in a particular
sample as pooling factor [13], and the row vector dimension
of its embedding table as embedding dimension. Figure 2(a)
reports the embedding dimension distribution of a recommen-
dation model, which ranges from single digits to hundreds.
Figure 2(b) presents the pooling factors of four features
in 50 samples. Due to variations in embedding dimension
and pooling factors, each feature has distinct memory access
and computation patterns. We use feature heterogeneity to
represent this phenomenon in the paper.

B. Limitation of Existing Solutions and New Opportunity

To avoid the inefficient separate execution of embedding
operations for different features, existing works [12], [14],
[17], [18] propose fusing all embedding operations into a
single GPU kernel through a library or compiler approach.
For example, RECom [12], an optimizing compiler for rec-
ommendation model inference, achieves an 11.20× speedup
on production models after enabling cross-embedding fusion.

0 20 40 60 80 100 120 140
Schedule ID

0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Feature 0
Feature 1

Fig. 3. Normalized performance of different schedules on particular features
with their distinct workloads. The embedding dimensions for both features
are 32. Pooling factors for feature 0 follow a normal distribution N(50, 102)
with a 0.3 coverage [13], while feature 1 has fixed pooling factors of 50.

However, we observe a key limitation of these works: they
treat all features equally within their fused kernels. NVIDIA
HugeCTR library [18] only supports creating an embedding
layer with the same embedding dimension for all features.
RECom [12] evenly distribute the embedding operations of
different features to individual GPU blocks. TorchRec [17]
selects the pre-compiled fused kernels based on the maximum
embedding dimension among all tables. They all overlook the
significant feature heterogeneity common in real businesses.

Opportunity: apply distinct schedules for different fea-
tures in the fused kernel. To quickly verify the feasibility
of this idea, we conduct a microbenchmark to evaluate the
performance of different schedules on two particular features
whose computation workloads are different, and show the
results in Figure 3. We observe that, for a specific feature,
different schedules can have a performance gap of up to
86.4%. Additionally, the optimal schedules of these two fea-
tures are not the same due to feature heterogeneity. Therefore,
it has great potential to improve the fused kernel performance
by enabling distinct schedule optimization to handle feature
heterogeneity.

C. Challenges

In this section, we mainly discuss the challenges of enabling
heterogeneous schedule optimization and the problems of
several straw-man solutions.

Challenge I: determining optimal schedules in the fused
kernel. Existing code schedule generation works [21]–[25] are
designed for conventional DNN models, where the execution
of multiple operators is performed sequentially so that they
can tune each schedule (corresponding to a fusion group
or an operator) one by one separately. In contrast, for the
embedding operations of recommendation models, we have to
tune the schedules for numerous features in the fused kernel
and consider inter-feature interference.

Straw-man solution 1: tune separately and combine. A
straightforward way is to tune the schedules separately by
generating and measuring non-fused kernels for each feature,
and then combine these schedules together. However, lower
separate latencies do not always indicate a lower latency
of the fused kernel due to inter-feature interference. Each
feature’s selected schedule might utilize more resources like
SMs and involve more memory accesses. It can introduce

intensive resource contention among different features in the
fused kernel, causing overall performance degradation. More-
over, the selected schedule might constrain the overall kernel
occupancy due to high shared memory and register usage. This
can significantly impact other features if their corresponding
schedules rely on a high occupancy to increase concurrency
and hide instruction latency.

Straw-man solution 2: tune holistically. Another way
is to regard the fused kernel containing various schedules
as a holistic entity and then tune it by enumerating all
schedule combinations. However, this method is intractable
as it requires exponential compilation and measurement time.
For example, assume we have a model with F = 100 features,
and for each feature, we have N = 4 schedule candidates for
tuning. Then, we have NF = 4100 ≈ 1060 combinations, and
it is impossible to compare such a large number of kernels.

Challenge II: handling dynamic workloads. As shown in
Figure 2(b), the pooling factors of input tensors of a model can
vary significantly among samples. This causes the computation
workloads to be only known at runtime. The varied batch sizes
and the absence of features also contribute to the dynamics.
Dynamic workloads make it difficult to determine the thread
mapping of each schedule in the fused kernel, i.e., use which
thread groups to process each of the features. Existing libraries
[17], [18] use a uniform schedule so that each thread group
can identify its responsible feature in easy ways, like dividing
the group ID by a constant number. These simple methods no
longer work well when using heterogeneous schedules, as the
required thread group number varies across features. Further-
more, dynamic workloads challenge the tuning processes of
existing schedule tuners [21], [22], [25], which require static
workload information to measure the schedule performance.

Straw-man solution to thread mapping: static mapping
based on the maximum/average historical workloads. A
naı̈ve idea is to allocate fixed thread groups to each fea-
ture based on its maximum or average historical workloads
and then adjust the per-thread workload adaptively. In this
way, each thread group can identify the feature to process
at compile-time, thus avoiding the complexity of runtime
thread mapping. The problem with this solution is that the
workload varies significantly among samples and batches. For
example, the standard deviation of pooling factors can be up
to hundreds. In this case, if we aggressively allocate the thread
groups based on the maximum workload, most of the threads
can be idle during the computation. If we use the average
workload instead, performance will also be affected when large
workloads arrive, leading to a workload imbalance among
GPU thread groups.

Straw-man solution to schedule tuning: runtime sched-
ule selection. To ensure the operator performance with arbi-
trary workloads, some dynamic shape compilers [24] adopt
to adaptively select the most suitable schedule for the sep-
arated operators in DNN layers based on input shapes at
runtime. However, when applied to the embedding layers, this
method requires preparing NF combinations of schedules for
runtime selection, which is infeasible. Another alternative is

Per-Feature
Schedule

Candidates

Embed. Spec.

Interference-aware Schedule Tuner (§IV-A)

Generally optimal schedule selection
based on historical data (§IV-A3)

… … ……

Two-stage interference-simulated schedule tuning (§IV-A2)

…

Feature Input Data

Optimal Fused
Kernel

Heterogeneous Schedule Fusion Compiler (§IV-B)

…
Fused Kernel

…

Runtime thread mapping kernel generation (§IV-B)

Fused KernelSchedules

Fig. 4. RecFlex overview.

to accommodate all the schedules into the fused kernel and
use internal branches for each feature to facilitate runtime
selection. While this approach reduces the number of compiled
kernels, overall occupancy is constrained by the most resource-
intensive schedules, potentially decreasing performance. Note
that no matter whether they will be executed at runtime, all
branches of a GPU kernel are compiled and impact the overall
occupancy. Besides, this alternative exacerbates the challenge
of thread mapping, as different schedules can demand distinct
thread mapping schemes.

In summary, the straw-man solutions of holistic tuning and
runtime schedule selection are intractable with exponential
time complexity, while the separate-combine tuning and static
thread mapping can lead to sub-optimal performance. We
present the performance analysis of the latter two solutions
in Section VI-D.

III. RECFLEX OVERVIEW

We present the system overview of RecFlex in Figure 4,
which contains the interference-aware schedule tuner (Sec-
tion IV-A) and the heterogeneous schedule fusion compiler
(Section IV-B). To use RecFlex to optimize the embedding
operations, users are required to provide per-feature sched-
ule candidates and embedding table specifications. Then, the
schedule tuner of RecFlex will tune the schedules based on
the historical input data of the models. The tuner relies on
the fusion compiler to generate fused GPU kernels of the
being-tuned schedules for latency measuring. Finally, the tuner
figures out the optimal schedules of all features and feeds them
to the compiler to output the optimal fused kernel.

Solution to challenges. RecFlex enables the feature
heterogeneity-aware optimization by addressing the challenges
discussed in Section II-C effectively. To determine the op-
timal schedules in the fused kernel, the schedule tuner of

RecFlex adopts a two-stage interference-simulated schedule
tuning strategy (Section IV-A2) that considers inter-feature
interference and tunes the schedules in polynomial time. To
solve the problems of dynamic workloads, we propose a
combined approach that tunes the generally optimal schedules
based on historical data at compile-time (Section IV-A3) and
determines the thread mapping based on input workloads at
runtime (Section IV-B).

IV. RECFLEX DESIGN

A. Interference-aware Feature Schedule Tuner

This section presents the design of RecFlex’s schedule
tuner. The tuner identifies the generally optimal schedules by
taking inter-feature interference into account, including overall
occupancy constraints and resource contention.

1) Problem definition: Suppose we have a model with F
features, and for each feature f ∈ [1, F], we have Nf schedule
candidates S(f) = {S(f)

1 , · · · , S(f)
Nf

}. We define the selected
set of schedules in the fused kernel as s = {s(1), · · · , s(F)},
where s(f) ∈ S(f),∀f ∈ [1, F]. Then, the target of the
schedule tuner is to find the set of schedules s in the search
space S = {S(1), · · · , S(F)}, that:

min
s

L(s; ξ) (1)

where ξ is the input data, and L(·) is the fused kernel latency
with given schedules and data. Let lb(·) be the execution time
of GPU thread block b with the given schedules and inputs,
l
(f)
b (·) be the time of block b used to process feature f (we

suppose different features use separate block groups, which
will be discussed in Section IV-B), and ξ(f) be the input data
of feature f . Then, we can get an approximation:

L(s; ξ) ≈
∑

b lb(s; ξ)
#SM ·O/W

=

∑
f

∑
b l

(f)
b (s(f); ξ(f))

#SM ·O/W
(2)

where #SM is the number of SMs on the GPU, O is the
occupancy of the fused kernel, i.e., the maximum active warps
per SM, and W is the number of warps per thread block.
Figure 5 shows a GPU kernel execution example to illustrate
this approximation. In the figure, we suppose the GPU has
two SMs, and the maximum number of active blocks per SM
is O/W = 2, so the number of blocks that can be executed in
parallel is #SM ·O/W = 4. Whenever a running block exits,
the GPU scheduler immediately schedules a pending block
to the released SM. After a block is dispatched to an SM,
it runs non-preemptively until it finishes. Therefore, we can
approximate the kernel latency by summing up the execution
time of all blocks and then divide it by the number of parallel
blocks, if the total number of blocks is large enough so that the
tail effect is negligible. Based on our observation, even during
online serving, the batching systems [5], [16] can dispatch a
large enough batch of requests to a GPU, so we consider the
approximation to be reasonable.

GPU Block

Kernel Latency

SM1

SM2

Timeline

Parallel
Blocks = 4

O/W = 2

Fig. 5. An illustration example of the kernel execution on the GPU.

2) Two-stage interference-simulated schedule tuning: It is
impractical to tune all schedule combinations to solve Equa-
tion 2 directly. Instead, we decompose the original problem
into F sub-problems, where the objective for each sub-
problem is to find the schedule s(f) that:

min
s(f)

[∑
b

l
(f)
b (s(f); ξ(f))

]
, f ∈ [1, F] (3)

with the overall kernel occupancy O constraint. Due to the
inter-feature interference, we cannot directly solve each sub-
problem independently. We need to eliminate the occupancy
dependency of each sub-problem on the schedules of other
features and consider the implicit inter-feature interference.

Two-stage occupancy-controlled tuning. During tuning
the schedules of different features in separate kernels accord-
ing to Equation 3, we control the occupancy of all features
explicitly to provide a uniform O for all sub-problems. This
is achieved by explicitly limiting register usage and spilling
overflowed registers to global memory for kernels with low
occupancy, while padding shared memory usage for kernels
with high occupancy. With the explicitly controlled occupancy,
we introduce a local-global two-stage approach to tune the
optimal schedules:

• Local stage: With given schedule candidates of each
feature, we first enumerate all possible occupancy values
(the count is often less than ten) based on the GPU
hardware. Then, for each occupancy value, we perform
the interference-simulated schedule tuning (detailed in the
next part) to solve Equation 3 to get the optimal schedule
of each feature.

• Global stage: After obtaining the optimal schedule set
with each possible occupancy value, we utilize the fusion
compiler of RecFlex to generate the corresponding fused
kernel and measure its performance. Finally, we choose
the optimal occupancy and schedules based on their
corresponding kernel performance. Formally, the goal of
this stage is to find the occupancy Ok that minimizes:

min
Ok

LOk
(sk; ξ) (4)

where sk is the selected schedule set corresponding to
occupancy Ok in the local stage, and LOk

(·) is the fused
kernel latency with explicitly controlled Ok.

We show this two-stage procedure in Figure 6. Suppose K
is the number of possible occupancy values, so in the local
stage, we tune the optimal schedules for all the occupancy

schedule candidates …

Local stage: per-feature schedule tuning
for all occupancy values

…

Global stage: optimal occupancy tuning

Feature Field 1

𝑺𝟐
(𝟏){...};

𝑺𝟏
(𝟏){...};

Feature Field F

𝑺𝟐
(𝑭){...};

𝑺𝟏
(𝑭){...};

…𝑂(𝑺
𝒊𝟏
(𝟏)
(𝟏){...}; 𝑺

𝒊𝟏
(𝑭)
(𝑭){...};

…𝑂* 𝑺
𝒊𝑲
(𝟏)
(𝟏){...}; 𝑺

𝒊𝑲
(𝑭)
(𝑭){...};

…𝑂 𝒔𝟏	{...}; 𝒔𝑭	{...};

Fig. 6. The two-stage schedule tuning procedure of RecFlex. O1, · · · , OK

are K possible occupancy values. i(f)k refers to the index of optimal schedule
candidate for feature f with occupancy Ok .

values through O1 to OK . Then, we perform occupancy tuning
in the global stage to determine the optimal occupancy value
and schedule set. For the per-feature schedule tuning in the
local stage with a specific occupancy, we only need to compile
one kernel (detailed in the next part), so the time complexity
of the local stage is O(F ·K), and the complexity of the entire
two stages is O(F · K + K). This means that we can solve
the problem in polynomial time.

Interference-simulated per-feature schedule tuning. To
effectively tune per-feature schedules in the local stage, we
propose an interference-simulated approach to simulate the
running environment with inter-feature interference of the
fused kernel and effectively compare different schedule candi-
dates. The insight is that although it is quite difficult to predict
the block execution time l

(f)
b (·) accurately to solve Equation 3

due to inter-feature interference [27], [28], we can compare the
schedules under the same simulated environment without the
exact value of l(f)b (·).

For each feature f , we simulate the GPU SM-level and grid-
level resource contention in the final fused kernel by padding
GPU blocks. First, this padding strategy fills the SMs with the
maximum number of allowable parallel blocks, enabling the
simulation of resource contention and instruction latency hid-
ing at the SM level. Without such padding, a single feature’s
input workload that fails to saturate the GPU would result in
the launched blocks being dispatched to separate SMs due to
the GPU’s round-robin scheduling. This leads to an absence
of intra-SM interference, making that changing the controlled
occupancy does not affect the block execution times. Second,
by incorporating redundant embedding operations within these
padding blocks, we can simulate the grid-level global memory
and L2 cache access patterns.

Furthermore, for effective comparison, we accommodate all
schedule candidates in the same GPU kernel so that we can
co-execute them in the same environment. Then, according to
Equation 3, for each schedule candidate, we measure and sum

SM 1

𝑺𝟏
(𝒇)

SM 2

𝑺𝟏
(𝒇)

SM 3

𝑺𝟐
(𝒇)

SM 4
Co-Execution & Padding

schedule candidates
for feature 𝑓

𝑺𝟏
(𝒇) 𝑺𝟐

(𝒇) dispatched blocks
for the schedule padding blocks

𝑺𝟐
(𝒇){

...
};

𝑺𝟏
(𝒇){

...
};

GPU

Fig. 7. Illustration of interference-simulated schedule tuning of feature f .

its corresponding block execution time and compare it with
others. For the candidate with the lowest execution time sum,
we regard it as the optimal one that outperforms others in the
final fused kernel, which involves many resource contention.

Figure 7 shows an illustration example of the interference-
simulated tuning with co-execution of schedule candidates
and block padding. We rely on the schedule fusion com-
piler of RecFlex to generate the kernel with co-execution
and padding and duplicate the input data ξ(f) for all fused
schedules. Although the simulation cannot provide the totally
same environment as in the final fused kernel, we find this
approach simple yet effective for the optimal schedule tuning
(see Section VI-D for the evaluation).

3) Generally optimal schedule selection based on historical
data: As discussed in Section II-C, it is infeasible to perform
runtime schedule selection due to the extremely large number
of combinations. Meanwhile, recent works [5], [13] point out
that the input data of a recommendation model follow the same
distribution in a certain time period, which provides them with
opportunities to predict future distribution by profiling histor-
ical data. With this insight, we measure the block execution
time on the historical data in a certain period during tuning
and then choose the schedules with the lowest average time.
That is, we adjust the problem definition from Equation 1 to:

min
s

[∑
i

L(s; ξi)

]
(5)

where ξi is the i-th batches in the sampled historical data.
Besides, we re-tune the schedules periodically (e.g., several
days) to handle the distribution shifts [11], [13]. In this way,
the selected schedules are generally optimal in each period.

B. Heterogeneous Schedule Fusion Compiler

In this section, we present the design of RecFlex’s heteroge-
neous schedule fusion compiler, which generates a fused GPU
kernel (shown in Figure 8) to process different features with
flexible schedules. We illustrate how the compiler addresses
the challenge of dynamic workloads and discuss several design
choices during codegen.

Runtime thread mapping with host-side workload anal-
ysis. As discussed in Section II-C, static thread mapping at
compile-time cannot meet the requirements of the dynamic
workloads, so we resort to the runtime thread mapping based
on the input workloads. In this way, we can allocate an

adaptive number of GPU thread groups to avoid workload im-
balance and resource wastage. However, performing runtime
thread mapping is a non-trivial task, as each thread group
needs to identify its corresponding feature and its relative
position within the groups for the same feature. Directly
analyzing the inputs within the fused GPU kernels and then
performing thread mapping requires the technologies of persis-
tent threads [29], [30] or dynamic parallelism [31], which are
complicated and can cause performance degradation. Instead,
we utilize the host-side CPUs to determine the thread mapping
and then pass the mapping information to the GPU. Besides
its simplicity, we adopt this design for two reasons. First,
before performing embedding operations, the input features
are often applied with preprocess operations such as string
split on the CPUs within the same node or from other nodes
[8], [12], [32]. Therefore, we can modify these preprocess
operations by adding extra workload analysis per data reading,
thus hiding the computation overhead. Second, we only need
to retrieve several bytes from DRAM for each thread group,
which introduces negligible kernel overhead.

Feature thread mapping unit selection. We choose the
GPU thread block as the basic thread mapping unit and
dispatch multiple blocks to each feature. The first reason
is convenience, as GPU thread blocks have separate shared
memories, which is easy for management. CUDA also pro-
vides many convenient block-level intrinsic instructions, like
the synchronization barrier. Second, choosing block as the
basic unit is suitable for recommendation inference workloads,
where the batch size of most queries is around hundreds. Note
that the key idea of our design is not limited to blocks but can
be extended to other thread group structures like warps or
block-clusters [31].

Argument passing. There can be thousands of schedules to
fuse, and each schedule can accept multiple input arguments.
Therefore, we cannot directly concatenate all the arguments
for the fused kernel entry, as the number of arguments for a
single function in CUDA and C/C++ is limited. Instead, we
pass an array of pointers on the GPU to the fused kernel, which
points to the real required arguments so that the schedules can
use specific indices to access their arguments.

If-else branches vs function pointer array. Using if-else
branches to dispatch the processing of different features to
the GPU blocks within the fused kernel can lead to thousands
of integer comparisons, while using a function pointer array
can directly jump to the destination function. However, we
find that using function pointer arrays can actually lead to
45.0% performance degradation compared to if-else branches.
This is because it leads to significant function call overhead
on the GPU, while using the block-level branches can make
all functions inline within the branches and only introduce
negligible overhead, even with thousands of branches.

We show an illustration example of the fused kernel in
Figure 8. We pass the thread mapping information in an array
called d_task_map to the fused GPU kernel (Line 7 in the
figure). In Line 9, we retrieve the thread mapping information
of each block, which includes feature_idx that contains

1 __device__ void Schedule1(...) { ... }
...

2 __device__ void ScheduleN(...) { ... }

3 __device__ int arg_offsets[N] = { ... };
4 __device__ int schedule_map[N] = { ... };

5 __global__ void
6 __launch_bounds__(BLOCK_THREADS, MAX_REG)
7 FusedKernel(void *args, int2 *d_task_map,

int *d_blocks_map) {
8 int2 task = d_task_map[blockIdx.x];
9 int feature_idx = task.x, rel_bidx = task.y;
10 int feature_blocks = d_blocks_map[feature_idx];
11 int schedule_id = schedule_map[feature_idx];

12 __shared__ union {
13 Schedule1SharedMemory s1;

...
14 ScheduleNSharedMemory sN;
15 } s;

16 if (schedule_id == 1) {
17 Schedule1(args + arg_offsets[feature_idx],
18 rel_bidx, feature_blocks, &s);
19 } else if (schedule_id == 2) {

...
20 } else if (schedule_id == N) {
21 ScheduleN(args + arg_offsets[feature_idx],
22 rel_bidx, feature_blocks, &s);
23 }
24 }

Fig. 8. An example of the fused kernel generated by RecFlex compiler.

the index of feature to process and rel_bidx that refers to
the relative block index in the blocks corresponding to the
same feature. We also retrieve feature_blocks, which
is the total number of blocks allocated for the feature, in
Line 10 by another map array. For Line 12-13, we define
the shared memory usage of the fused kernel based on the
maximum usage of all schedules, as the schedules use separate
blocks with no shared memory overlap. For Line 16-23, we
call the schedule based on the schedule_map, which maps
the feature_idx to the shared schedules. Features with
identical embedding dimensions and workloads can have the
same optimal schedule, and sharing this schedule can reduce
code size and accelerate compilation.

V. IMPLEMENTATION

We implement the core design of RecFlex in 1.6K lines
of Python codes. We also develop several example schedule
templates for the irregular embedding operations with 2K
lines of CUDA and Python based on the kernels provided by
TensorFlow [16], TorchRec [17], and NVIDIA Thrust [33].
The generated fused GPU kernel is wrapped and registered as
a PyTorch operator [15]. Users can rely on the PyTorch API of
torch.ops.load_library to load the compiled binary
so that they can conveniently utilize the fused embedding
operator in their models to accelerate the inference.

RecFlex allows users to add customized schedule templates
by inheriting a schedule template class using Python. In the
derived class, users need to implement the interface functions
to emit the schedule code within the device function body
(Line 1 in Figure 8) based on given parameters and pre-defined

TABLE I
BASIC STATISTICS OF EVALUATED MODELS AND DATASETS.

Model # Features # One-hot # Multi-hot Emb. Dim.
A 1,000 500 500 4-128
B 1,200 1,000 200 4-128
C 800 0 800 4-128
D 1,000 500 500 8
E 1,000 500 500 32

variables (e.g., rel_bidx at Line 9 in Figure 8), provide the
used shared memory, and define the search space of tunable
schedule-related parameters.

VI. EVALUATION

A. Experimental Setup

Models and datasets. The commonly used datasets [34],
[35] are too simple to be representative of current production
models [11], [13], as they only have tens of features and
exhibit low feature heterogeneity. Therefore, we synthesize
some datasets based on our observation of production data
for evaluation, using different portions of feature types and
data distributions to see whether RecFlex can handle various
configurations effectively. We provide a script to generate
the input datasets (i.e., the embedding lookup indices) with
specified pooling factor distribution and embedding table
shape of each feature. Table I shows the basic statistics of
these models and datasets. The details of the model and
dataset configurations, as well as the data generation script,
can be found in our artifact repository3. Models D and E
share the same input dataset while their embedding dimensions
are different, and they both use fixed embedding dimensions
for all features to evaluate HugeCTR’s [18] fused embedding
operation (detailed in the next paragraph).

Baselines. We compare RecFlex with other recommender
frameworks, including TensorFlow (TF) [16], TorchRec [17],
HugeCTR [18]. TensorFlow [16] does not fuse the embedding
operations and processes each feature sequentially, which is
inefficient. Hence, we also add the baseline of RECom [12],
an end-to-end optimizing compiler for TensorFlow recommen-
dation models, which fuses all embedding operations into
a single GPU kernel. TorchRec [17] is a PyTorch domain
library for building recommendation models. We use the
FusedEmbeddingBagCollection for TorchRec during
the evaluation, which leverages FBGEMM [36] to enable the
fused embedding operations. NVIDIA HugeCTR [18] allows
users to create an embedding layer containing multiple tables
with the same vector dimension so that it can concatenate these
embedding tables to perform fused operations. For HugeCTR,
we only evaluate its performance on models D and E, which
have fixed embedding dimensions across features.

Testbed. We evaluate RecFlex and the baselines on an
NVIDIA V100 GPU an A100 GPU, respectively. The Python
and CUDA versions used in the evaluation are 3.8 and 11.8,
respectively. For the evaluation of RecFlex and TorchRec, we

3https://github.com/PanZaifeng/RecFlex/tree/main/data synthesis

https://github.com/PanZaifeng/RecFlex/tree/main/data_synthesis

use PyTorch with the version 2.2.0. The TorchRec version
is 0.6.0 with FBGEMM 0.6.0. For TensorFlow and RECom,
we use TensorFlow 2.6.2, which is the version supported by
RECom [12]. For HugeCTR, we use its official image with
version 23.04.

Evaluation method. We evaluate the inference latency of
recommendation models, but there is no fundamental reason
limiting RecFlex from optimizing the training process, except
the manual efforts to support more operators. We randomly
sample 128 batches for each evaluation model from its cor-
responding dataset. Then, we read each batch of input data
from the disk and perform the preprocess in advance. We then
measure the model execution time, accumulate the execution
time of these batches, and normalize it to the most performant
framework. Note that in production, the preprocess is executed
with many CPU threads by using highly optimized libraries,
and the optimization of the preprocessing is not the focus of
our paper. Other works [5], [14], [17], [18], [37] also adopt a
similar setting. We use NVIDIA Nsight Systems to measure
the kernel execution time accurately.

B. Kernel Performance

We first evaluate the performance of the fused embedding
kernel. Figures 9(a) and (b) reports the normalized perfor-
mance of RecFlex and the baselines on a V100 GPU and an
A100 GPU, respectively. For the TensorFlow baseline, which
launches separate GPU kernels for different features, we sum-
marize the execution time of all the embedding kernels for it.
For the HugeCTR baseline, we only show its performance on
models D and E, whose embedding dimensions are the same
across feature. Besides, we find that HugeCTR’s embedding
layer involves many other operations related to its GPU-side
embedding cache mechanism, such as cache update operations.
These operations cannot be avoided even though we place
the entire embedding table on the GPU memory. Hence, to
compare HugeCTR with others fairly, we ignore its cache-
related operations and only measure the execution time of its
fused pooling operation kernels. The results show that across
these models and datasets, RecFlex achieves average speedups
of 35.40×, 11.31×, 20.77×, and 2.64× over TensorFlow,
RECom, HugeCTR, and TorchRec on the two GPU platforms.

The performance of TensorFlow is very poor, as it executes
all embedding operations sequentially. RECom accelerates the
execution of TensorFlow significantly by automatically fusing
the embedding operations to improve GPU utilization, but its
performance is still limited by inefficient schedules and static
thread mapping. TorchRec adopts a fine-grained sample-warp
parallelism mapping and shows the best performance among
the baselines, but it still has the problem of overlooking the
feature heterogeneity within a recommendation model.

We observe that the performance of HugeCTR is worse than
RECom and TorchRec, even though HugeCTR is a vendor-
provided library and requires the same embedding dimension
across features. The reason is that HugeCTR uses a coarse-
grained sample-block parallelism mapping and processes all
features sequentially within a block, which relies on large

A B C D E
Models

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d
Ke

rn
el

Pe
rfo

rm
an

ce

TF TF-RECom TorchRec HugeCTR RecFlex

(a) Performance on a V100 GPU.

A B C D E
Models

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d
Ke

rn
el

Pe
rfo

rm
an

ce

TF TF-RECom TorchRec HugeCTR RecFlex

(b) Performance on an A100 GPU.

Fig. 9. Embedding operation kernel performance comparison of RecFlex
and the baselines on two GPU platforms.

TABLE II
DETAILED V100 KERNEL ANALYSIS OF RECFLEX AND TORCHREC.

Metric Name TorchRec RecFlex
Memory Throughput (GB/s) 380.28 641.43

Memory Busy (%) 28.46 40.68
Max Bandwidth (%) 38.75 65.57

L1 Cache Throughput (%) 29.20 29.46
L2 Cache Throughput (%) 23.83 40.68

Avg. Active Threads Per Warp 20.35 28.54
Avg. Not Predicted Off Threads per Warp 18.13 26.03

embedding dimensions and batch sizes to saturate the GPU.
Hence, HugeCTR recommends users create models with large
embedding dimensions as posted in its blogs. However, large
embedding dimensions for all features cannot meet the real
demand of many businesses. Many features are less important
than others, so using a large dimension for them leads to
slower convergence and memory wastage. Besides, batch sizes
during inference are often moderate due to latency constraints.

Detailed analysis. We utilize NVIDIA Nsight Compute
for a detailed analysis to understand why kernels generated
by RecFlex surpass others in performance. We collect some
metric values of RecFlex and TorchRec by running a specific
batch of model A on a V100 GPU and show them in Ta-
ble II. As embedding operations are memory-intensive, we first
compare the memory utilization-related metrics of RecFlex
and TorchRec. We observe that RecFlex excels in all memory
utilization metrics by using more suitable schedules across
features. For instance, RecFlex achieves 1.69 times the mem-
ory throughput of TorchRec, indicating superior GPU DRAM
utilization. Despite this, there is still a gap between RecFlex’s
memory bandwidth usage and the GPU’s peak capacity. This
is because the embedding operations are irregular and have
dynamic workloads, so all the provided schedule candidates
cannot fully utilize the GPU memory bandwidth. With more
schedule templates, there is potential for RecFlex to find more

A B C D E
Models

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d
En

d-
to

-e
nd

Pe
rfo

rm
an

ce
TF TF-RECom TorchRec HugeCTR RecFlex

(a) Performance on a V100 GPU.

A B C D E
Models

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d
En

d-
to

-e
nd

Pe
rfo

rm
an

ce

TF TF-RECom TorchRec HugeCTR RecFlex

(b) Performance on an A100 GPU.

Fig. 10. End-to-end performance comparison of RecFlex and the baselines
on two GPU platforms.

efficient GPU kernels. Additionally, we report the average
number of active threads and non-predicted off threads per
warp in the table. For these thread utilization-related metrics,
TorchRec has much lower values than RecFlex. The reason
is that the uniform schedule ignores the various per-feature
workloads, causing many threads within a warp to be inactive
due to early exit or be predicted off due to warp divergence.

Dataset with an extremely large number of features.
To verify the scalability of RecFlex, we synthesize an extra
dataset with 10,000 features. Experiments show that RecFlex
still achieves a 4.2× speedup over TorchRec with this dataset.

MLPerf dataset. MLperf [38] uses TorchRec [17] as its
backend and provides a synthesized multi-hot dataset based
on criteo [39]. This dataset comprises only 26 feature fields
and exhibits low inter-feature heterogeneity. According to our
experiments, despite this dataset’s low feature heterogeneity,
RecFlex still achieves nearly the same kernel performance
as TorchRec. In many real-world applications, feature hetero-
geneity is much more significant [11], [13] so that RecFlex
can outperform TorchRec by selecting distinct schedules.

C. End-to-end Model Performance

We add an MLP layer with the hidden unit numbers 1024,
256, and 128 next to the embedding layer of each model.
We then present the end-to-end model execution time in
Figures 10(a) and (b). For HugeCTR, as we discussed in
Section VI-B, it has many GPU cache-related operations that
are not involved by other frameworks, so we only consider the
execution time of the part next to its cache-related operations.
Experimental results show that RecFlex established 7.74×,
2.69×, 6.76×, and 1.85× average speedups over TensorFlow,
RECom, HugeCTR, and TorchRec on the two GPU platforms.
The average end-to-end speedups of RecFlex are less than the
kernel performance speedups because RecFlex does not focus
on optimizing the DNN parts.

A B C D E
Models

0.0

0.5

1.0

No
rm

al
ize

d
Ke

rn
el

Pe
rfo

rm
an

ce

Direct Separate-combine Two-stage

Fig. 11. Tuning result performance comparison between the two-stage tuning
and the direct separate-combine approach.

D. Ablation Study

In this section, we run variants of RecFlex to evaluate its
different components or design choices.

Two-stage interference-simulated schedule tuning. We re-
place the two-stage tuning strategy described in Section IV-A2
with the straw-man solution 1 in Section II-C, which is a
direct separate-combine approach. This approach tunes the
per-feature schedule directly based on the separate latency
without considering inter-feature interference. It generates a
non-padded kernel for each schedule candidate and measures
its execution time to compare the schedule with others. We
compare the tuning results of RecFlex with this variant in
Figure 11. The results show that the kernels found by the
two-stage tuning approach outperform the ones found by the
latency-based direct approach across all models, with an av-
erage improvement of 4.82×. This significantly demonstrates
the superiority of RecFlex’s schedule tuning strategy.

Effectiveness of the schedule tuner. To further demonstrate
the practicability and effectiveness of the schedule tuner, we
randomly pick three features in model A, and for each feature,
we replace its selected schedule with other schedule candidates
to generate new fused embedding kernels. We then compare
the performance of these kernels to see if the kernel with the
schedules tuned by RecFlex can outperform others. Figure 12
presents the performance variation curve of these kernels. The
points marked with “o” are the schedules tuned by RecFlex.
We observe that RecFlex effectively figures out the schedules
that lead to the optimal or near-optimal (the gap is extremely
slight and can be caused by measurement errors) kernel perfor-
mance. Besides, the figure shows that using schedules 0-20 for
feature 0 and feature 2 causes significant kernel performance
degradation. We find the reason is that these schedules use
many registers per thread, so constraining the occupancy
causes serious register spilling problems, introducing extra
GPU DRAM access overheads.

Runtime thread mapping. We adjust the fusion compiler
of RecFlex to replace the runtime thread mapping of the fused
kernel with static ones. Specifically, we use two static thread
mapping strategies, which allocate GPU blocks to each feature
based on the average and maximum historical workload,
respectively. We first run the runtime thread mapping kernels
to collect the thread block usages and then use this historical
information to determine the static thread mapping. During
execution, each allocated block adjusts its corresponding com-
putation based on the input workload. For example, if we

0 20 40 60 80 100 120 140
Selected Schedule ID

0.88
0.90
0.92
0.94
0.96
0.98
1.00

No
rm

al
ize

d
Ke

rn
el

Pe
rfo

rm
an

ce
Feature 0 Feature 1 Feature 2

Fig. 12. Performance variation with the change of the selected schedule of
a specific feature.

A B C D E
Models

0.00
0.25
0.50
0.75
1.00

No
rm

al
ize

d
Ke

rn
el

Pe
rfo

rm
an

ce

Static TM (mean) Static TM (max) Runtime TM

Fig. 13. Performance comparison of runtime thread mapping and two static
thread mapping strategies.

allocate two blocks to a specific feature at compile time while
the input workload requires three blocks at runtime, the first
block will perform the computation of two blocks sequentially.
Figure 13 shows that, compared with these static strategies,
runtime thread mapping of RecFlex offers up to 1.41× and
1.50× improvements, because static thread mapping causes
resource wastage and workload imbalance.

Furthermore, static thread mapping cannot handle the long
tails of requests [5] well. For the dataset used in our evaluation,
we limit the maximum batch size of a request to 512, as
it is common for industrial serving systems to split batches
exceeding a specific threshold. However, there are serving
systems like DeepRecSys [5] that do not split batches. We
generate an additional request with 2,560 samples to simulate
the long tail requests in this case, and the experimental results
show that for this request, the two static thread mapping
strategies cause 50.5% and 40.4% performance degradation
compared with runtime thread mapping.

E. Overhead Analysis

Compile and tuning overhead. RecFlex tunes the optimal
schedules in O(F · K + K) time, which is discussed in
Section IV-A. As the per-feature schedule tuning in the local
stage is independent, we can simultaneously compile and tune
different features. In our evaluation, we use eight individual
GPUs to tune schedules and 32 CPU threads to compile
generated GPU kernels in parallel. In this way, we can get
the optimal fused kernel in several hours, which is acceptable
as we can serve the model for a long time (e.g., one week)
after the tuning. There are still potential ways to accelerate the
tuning procedure, such as eliminating redundant compilation
and data loading, which are not the concentration of this paper.

Runtime overhead. Host-side workload analysis can intro-
duce some overhead. However, the involved operations are so
lightweight that our experiments show that the overhead is
less than 0.1% of the data loading time. This overhead can be
hidden behind the entire inference pipeline.

VII. DISCUSSIONS

Larger model sizes. RecFlex concentrates on the optimiza-
tion of the fused embedding operations on a single GPU.
To support models with embedding table sizes exceeding the
GPU memory capacity, we can combine RecFlex with existing
solutions. For example, we can place different embedding
tables on multiple GPUs through heuristics [14] or machine
learning methods [40], [41] and then use RecFlex to optimize
the embedding operations on each GPU. We can also use the
GPU to serve as the hot-embedding cache of the CPU [13],
[14], [32], [37] by developing corresponding schedules with
unified memory (UVM) [31].

Larger fusion scopes. In this paper, we explore the sched-
ule optimization of the embedding operations [14], i.e., the
embedding lookup and the following pooling operations. As
we adopt a compiler approach to generating the fused kernel,
there is an opportunity to cluster more operators into it. For
example, some models can contain several numerical prepro-
cess operators before the embedding operations [12]. However,
involving more operators in the fused kernel challenges the
schedule tuning, as we need to consider both intra- and inter-
feature interference. We leave this as one of our future work.

Automatic scheduling. Currently, we require users to man-
ually write the schedule templates to feed RecFlex. There are
auto-schedulers [21], [22], [25], [42], [43] that generate and
search the efficient schedule of a single operator automatically,
but they do not support dynamic shape workloads yet. If
they support dynamic shapes in the future, we can adjust the
generated schedules of these auto-schedulers to be compatible
with RecFlex’s input templates, providing opportunities for
further performance improvement.

VIII. RELATED WORK

Recommendation model optimization. Extensive works
[44]–[51] have been proposed to optimize the training or
serving of recommendation models from different aspects.
Kraken [49] is a large-scale recommendation model training
system with a specialized parameter server and sparse-aware
optimizers. TT-Rec [44] and EL-Rec [45] apply tensor-train
compression to reduce the embedding table size. These works
do not involve the GPU kernel optimization of embedding
operations, which is the main focus of this paper. There are
works [11], [13], [14], [32], [37], [52]–[55] rely on intra-
feature heterogeneity, i.e., the heterogeneity across embedding
entries of a feature, to design their systems. In contrast,
RecFlex explores inter-feature heterogeneity, which is not
considered by previous works. Another line of works [56]–
[59] designs specialized hardware to accelerate the execution
of embedding operations rather than utilize the commonly used

GPUs. TorchRec [17] and NVIDIA HugeCTR [18] are rec-
ommendation model libraries with highly manually optimized
GPU kernels, but they do not consider the significant feature
heterogeneity of industrial recommendation models. RecFlex
further improves the GPU kernel performance by applying
distinct schedules across features.

Machine learning compilers. Machine learning compilers
[19], [23], [24], [26], [42], [60]–[66] are widely used to
optimize the performance of model inference by performing
graph transformations and generating efficient codes. These
works mainly focus on optimizing classical DNNs and are
complementary to RecFlex, as we can use them and RecFlex
to optimize the different parts of a recommendation model.
Among them, Rammer [26] fuses operators through inter-
and intra-operator co-scheduling and tunes schedules in its
fused kernels based on basic heuristics, but its fusion and
schedule tuning cannot meet the requirements of embedding
optimizations. It overlooks interference among schedules, as-
sumes homogeneous blocks for an operator, and lacks sup-
port for dynamic workloads. RECom [12] is an end-to-end
optimizing compiler for recommendation models. It fuses
operations within thousands of embedding subgraphs into a
single GPU kernel, but it treats different features equally in the
fused kernel and uses static thread mapping, overlooking the
feature heterogeneity and workload variance. Overall, previous
compilers either generate inefficient kernels or fail to generate
kernels for recommendation embedding operations.

IX. CONCLUSION

In this paper, we identify the limitation of existing recom-
mendation model libraries and optimizing compilers, which
is that they treat all features with identical schedules in
their fused embedding kernels, overlooking the significant
feature heterogeneity. To address this limitation, we introduce
RecFlex to optimize the fused kernel with flexible schedules
for different features. RecFlex tunes the generally optimal
schedules based on recent input data. It first tunes the per-
feature schedule in the local stage with explicitly controlled
occupancy and simulated inter-feature interference, and then
determines the optimal occupancy value in the global stage.
RecFlex also incorporates a compiler to generate fused GPU
kernels with heterogeneous schedules. The thread mapping of
the fused kernels is determined at runtime to reduce workload
imbalance and resource wastage. Our evaluation shows that
RecFlex outperforms existing solutions significantly. As far as
we know, RecFlex is the first work to explore schedule tuning
in the fused kernel with inter-schedule interference. We hope
our work can inspire future research on this new topic.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (No. 62322213 and 62172419) and Bei-
jing Nova Program (No. 20230484397 and 20220484137). We
sincerely thank all the anonymous reviewers for their insightful
comments and feedback. We would also thank Zheng Wang

at UCSD and Jiawei Guan at RUC for their extensive sug-
gestions. We use ChatGPT to polish the writing. Zaifeng Pan,
Feng Zhang, Ruofan Wu, and Xiaoyong Du are with the Key
Laboratory of Data Engineering and Knowledge Engineering
(MOE), and School of Information, Renmin University of
China. Feng Zhang is the corresponding author of this paper.

REFERENCES

[1] H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque,
L. Hong, V. Jain, X. Liu, and H. Shah, “Wide & deep learning for
recommender systems,” in Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems, DLRS@RecSys 2016, Boston, MA,
USA, September 15, 2016, A. Karatzoglou, B. Hidasi, D. Tikk, O. S.
Shalom, H. Roitman, B. Shapira, and L. Rokach, Eds. ACM, 2016,
pp. 7–10.

[2] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in Proceedings of the 10th ACM Conference
on Recommender Systems, Boston, MA, USA, September 15-19, 2016,
S. Sen, W. Geyer, J. Freyne, and P. Castells, Eds. ACM, 2016, pp.
191–198. [Online]. Available: https://doi.org/10.1145/2959100.2959190

[3] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Malle-
vich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyan-
skiy, “Deep learning recommendation model for personalization and
recommendation systems,” CoRR, vol. abs/1906.00091, 2019.

[4] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. M. Hazelwood, M. Hempstead, B. Jia, H. S. Lee, A. Male-
vich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The
architectural implications of facebook’s dnn-based personalized recom-
mendation,” in IEEE International Symposium on High Performance
Computer Architecture, HPCA 2020, San Diego, CA, USA, February
22-26, 2020. IEEE, 2020, pp. 488–501.

[5] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-
H. S. Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for
optimizing end-to-end at-scale neural recommendation inference,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2020, pp. 982–995.

[6] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, 2018, pp. 1059–1068.

[7] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,”
in The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 2019, pp. 5941–5948.

[8] M. Cheng, Y. Gao, G. Liu, H. Jin, and X. Zhang, “Easyrec: An
easy-to-use, extendable and efficient framework for building industrial
recommendation systems,” CoRR, vol. abs/2209.12766, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2209.12766

[9] Alibaba, “Alibaba/DeepRec,” https://github.com/alibaba/DeepRec, 2023.
[10] Q. Wang, Z. Ji, H. Liu, and B. Zhao, “Deep bayesian multi-target

learning for recommender systems,” CoRR, vol. abs/1902.09154, 2019.
[Online]. Available: http://arxiv.org/abs/1902.09154

[11] F. Lai, W. Zhang, R. Liu, W. Tsai, X. Wei, Y. Hu, S. Devkota,
J. Huang, J. Park, X. Liu et al., “{AdaEmbed}: Adaptive embedding for
{Large-Scale} recommendation models,” in 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), 2023, pp.
817–831.

[12] Z. Pan, Z. Zheng, F. Zhang, R. Wu, H. Liang, D. Wang, X. Qiu, J. Bai,
W. Lin, and X. Du, “RECom: A Compiler Approach to Accelerating
Recommendation Model Inference with Massive Embedding Columns,”
in Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 4, 2023, pp. 268–286.

https://doi.org/10.1145/2959100.2959190
https://doi.org/10.48550/arXiv.2209.12766
https://github.com/alibaba/DeepRec
http://arxiv.org/abs/1902.09154

[13] G. Sethi, B. Acun, N. Agarwal, C. Kozyrakis, C. Trippel, and
C. Wu, “Recshard: statistical feature-based memory optimization for
industry-scale neural recommendation,” in ASPLOS ’22: 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and T. F.
Wenisch, Eds. ACM, 2022, pp. 344–358. [Online]. Available:
https://doi.org/10.1145/3503222.3507777

[14] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu,
M. Ozdal, J. Nie, J. Park, L. Luo, J. A. Yang, L. Gao, D. Ivchenko,
A. Basant, Y. Hu, J. Yang, E. K. Ardestani, X. Wang, R. Komuravelli,
C. Chu, S. Yilmaz, H. Li, J. Qian, Z. Feng, Y. Ma, J. Yang, E. Wen,
H. Li, L. Yang, C. Sun, W. Zhao, D. Melts, K. Dhulipala, K. R.
Kishore, T. Graf, A. Eisenman, K. K. Matam, A. Gangidi, G. J.
Chen, M. Krishnan, A. Nayak, K. Nair, B. Muthiah, M. khorashadi,
P. Bhattacharya, P. Lapukhov, M. Naumov, A. Mathews, L. Qiao,
M. Smelyanskiy, B. Jia, and V. Rao, “Software-hardware co-design for
fast and scalable training of deep learning recommendation models,”
in ISCA ’22: The 49th Annual International Symposium on Computer
Architecture, New York, New York, USA, June 18 - 22, 2022, V. Salapura,
M. Zahran, F. Chong, and L. Tang, Eds. ACM, 2022, pp. 993–1011.
[Online]. Available: https://doi.org/10.1145/3470496.3533727

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. B. Fox, and R. Garnett, Eds., 2019, pp. 8024–8035.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX OSDI 2016, K. Keeton
and T. Roscoe, Eds. USENIX Association, 2016, pp. 265–283.

[17] Meta, “Pytorch domain library for recommendation systems,” https://
github.com/pytorch/torchrec, 2023.

[18] NVIDIA, “NVIDIA-Merlin/HugeCTR,” https://github.com/
NVIDIA-Merlin/HugeCTR, 2023.

[19] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM: an
automated end-to-end optimizing compiler for deep learning,” in 13th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, A. C. Arpaci-
Dusseau and G. Voelker, Eds. USENIX Association, 2018, pp. 578–
594.

[20] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe, “Halide: a language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” Acm Sigplan
Notices, vol. 48, no. 6, pp. 519–530, 2013.

[21] T. Chen, L. Zheng, E. Q. Yan, Z. Jiang, T. Moreau,
L. Ceze, C. Guestrin, and A. Krishnamurthy, “Learning to
optimize tensor programs,” in Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., 2018, pp.
3393–3404. [Online]. Available: https://proceedings.neurips.cc/paper/
2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html

[22] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali,
Y. Wang, J. Yang, D. Zhuo, K. Sen, J. E. Gonzalez, and
I. Stoica, “Ansor: Generating high-performance tensor programs for
deep learning,” in 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, November 4-6,
2020. USENIX Association, 2020, pp. 863–879. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/zheng

[23] Z. Zheng, X. Yang, P. Zhao, G. Long, K. Zhu, F. Zhu, W. Zhao, X. Liu,
J. Yang, J. Zhai, S. L. Song, and W. Lin, “Astitch: Enabling a new multi-
dimensional optimization space for memory-intensive ML training and
inference on modern SIMT architectures,” in ASPLOS ’22: 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February

2022 - 4 March 2022, B. Falsafi, M. Ferdman, S. Lu, and T. F. Wenisch,
Eds. ACM, 2022, pp. 359–373.

[24] Z. Zheng, Z. Pan, D. Wang, K. Zhu, W. Zhao, T. Guo, X. Qiu, M. Sun,
J. Bai, F. Zhang, X. Du, J. Zhai, and W. Lin, “BladeDISC: Optimizing
Dynamic Shape Machine Learning Workloads via Compiler Approach,”
in Proc. ACM Manag. Data 1, 3 (SIGMOD), Article 206 (September
2023), 29 pages. ACM, 2023.

[25] Y. Ding, C. H. Yu, B. Zheng, Y. Liu, Y. Wang, and G. Pekhimenko,
“Hidet: Task-mapping programming paradigm for deep learning tensor
programs,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2023, pp. 370–384.

[26] L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F. Yang,
L. Zhang, and L. Zhou, “Rammer: Enabling holistic deep learning
compiler optimizations with rtasks,” in 14th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2020,
Virtual Event, November 4-6, 2020. USENIX Association, 2020,
pp. 881–897. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/ma

[27] X. Zhao, M. Jahre, and L. Eeckhout, “Hsm: A hybrid slowdown model
for multitasking gpus,” in Proceedings of the twenty-fifth international
conference on architectural support for programming languages and
operating systems, 2020, pp. 1371–1385.

[28] W. Zhao, Q. Chen, H. Lin, J. Zhang, J. Leng, C. Li, W. Zheng, L. Li, and
M. Guo, “Themis: Predicting and reining in application-level slowdown
on spatial multitasking gpus,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 653–663.

[29] Z. Zheng, C. Oh, J. Zhai, X. Shen, Y. Yi, and W. Chen, “Versapipe: a
versatile programming framework for pipelined computing on GPU,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-18,
2017, H. C. Hunter, J. Moreno, J. S. Emer, and D. Sánchez, Eds. ACM,
2017, pp. 587–599.

[30] Zhen Zheng and Chanyoung Oh and Jidong Zhai and Xipeng Shen
and Youngmin Yi and Wenguang Chen, “Hiwaylib: A software frame-
work for enabling high performance communications for heterogeneous
pipeline computations,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-
17, 2019, I. Bahar, M. Herlihy, E. Witchel, and A. R. Lebeck, Eds.
ACM, 2019, pp. 153–166.

[31] NVIDIA, “Programming Guide :: CUDA Toolkit Documentation,” https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, 2023.

[32] Y. Zhang, L. Chen, S. Yang, M. Yuan, H. Yi, J. Zhang, J. Wang,
J. Dong, Y. Xu, Y. Song, Y. Li, D. Zhang, W. Lin, L. Qu, and
B. Zheng, “PICASSO: unleashing the potential of gpu-centric training
for wide-and-deep recommender systems,” in 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia,
May 9-12, 2022. IEEE, 2022, pp. 3453–3466. [Online]. Available:
https://doi.org/10.1109/ICDE53745.2022.00324

[33] NVIDIA, “Thrust: The C++ Parallel Algorithms Library,” https://github.
com/NVIDIA/thrust, 2023.

[34] Kaggle, “Display Advertising Challenge,” https://www.kaggle.com/c/
criteo-display-ad-challenge, 2023.

[35] Kaggle, “Click-Through Rate Prediction,” https://www.kaggle.com/c/
avazu-ctr-prediction, 2023.

[36] D. Khudia, J. Huang, P. Basu, S. Deng, H. Liu, J. Park, and M. Smelyan-
skiy, “Fbgemm: Enabling high-performance low-precision deep learning
inference,” arXiv preprint arXiv:2101.05615, 2021.

[37] M. Xie, Y. Lu, J. Lin, Q. Wang, J. Gao, K. Ren, and J. Shu, “Fleche:
an efficient gpu embedding cache for personalized recommendations,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 402–416.

[38] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C. Wu,
B. Anderson, M. Breughe, M. Charlebois, W. Chou, R. Chukka,
C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke, D. Fick, J. S.
Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao, T. S. John,
P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa, P. Meng,
P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R. Rajan,
D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson, F. Wei, E. Wu,
L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong, P. Zhang, and Y. Zhou,
“Mlperf inference benchmark,” in 47th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2020, Valencia, Spain,

https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3470496.3533727
https://github.com/pytorch/torchrec
https://github.com/pytorch/torchrec
https://github.com/NVIDIA-Merlin/HugeCTR
https://github.com/NVIDIA-Merlin/HugeCTR
https://proceedings.neurips.cc/paper/2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8b5700012be65c9da25f49408d959ca0-Abstract.html
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1109/ICDE53745.2022.00324
https://github.com/NVIDIA/thrust
https://github.com/NVIDIA/thrust
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction

May 30 - June 3, 2020. IEEE, 2020, pp. 446–459. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00045

[39] C. A. Lab, “Download Criteo 1TB Click Logs dataset,” https://ailab.
criteo.com/download-criteo-1tb-click-logs-dataset, 2023.

[40] D. Zha, L. Feng, Q. Tan, Z. Liu, K.-H. Lai, B. Bhushanam, Y. Tian,
A. Kejariwal, and X. Hu, “Dreamshard: Generalizable embedding table
placement for recommender systems,” Advances in Neural Information
Processing Systems, vol. 35, pp. 15 190–15 203, 2022.

[41] D. Zha, L. Feng, B. Bhushanam, D. Choudhary, J. Nie, Y. Tian, J. Chae,
Y. Ma, A. Kejariwal, and X. Hu, “Autoshard: Automated embedding
table sharding for recommender systems,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2022, pp. 4461–4471.

[42] H. Zhu, R. Wu, Y. Diao, S. Ke, H. Li, C. Zhang, J. Xue,
L. Ma, Y. Xia, W. Cui, F. Yang, M. Yang, L. Zhou, A. Cidon,
and G. Pekhimenko, “ROLLER: fast and efficient tensor compilation
for deep learning,” in 16th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, M. K. Aguilera and H. Weatherspoon,
Eds. USENIX Association, 2022, pp. 233–248. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/zhu

[43] S. Zheng, Y. Liang, S. Wang, R. Chen, and K. Sheng, “Flextensor:
An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system,” in ASPLOS ’20:
Architectural Support for Programming Languages and Operating
Systems, Lausanne, Switzerland, March 16-20, 2020, J. R. Larus,
L. Ceze, and K. Strauss, Eds. ACM, 2020, pp. 859–873. [Online].
Available: https://doi.org/10.1145/3373376.3378508

[44] C. Yin, B. Acun, C. Wu, and X. Liu, “Tt-rec: Tensor train compression
for deep learning recommendation models,” in Proceedings of Machine
Learning and Systems 2021, MLSys 2021, virtual, April 5-9, 2021,
A. Smola, A. Dimakis, and I. Stoica, Eds. mlsys.org, 2021.

[45] Z. Wang, Y. Wang, B. Feng, D. Mudigere, B. Muthiah, and Y. Ding, “El-
rec: efficient large-scale recommendation model training via tensor-train
embedding table,” in 2022 SC22: International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE
Computer Society, 2022, pp. 1007–1020.

[46] C. Zeng, L. Luo, Q. Ning, Y. Han, Y. Jiang, D. Tang, Z. Wang,
K. Chen, and C. Guo, “FAERY: an fpga-accelerated embedding-
based retrieval system,” in 16th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2022, Carlsbad, CA,
USA, July 11-13, 2022, M. K. Aguilera and H. Weatherspoon,
Eds. USENIX Association, 2022, pp. 841–856. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/zeng

[47] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li, “AIBox: CTR
prediction model training on a single node,” in Proceedings of the
28th ACM International Conference on Information and Knowledge
Management, 2019, pp. 319–328.

[48] D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and
A. Heinecke, “Optimizing deep learning recommender systems training
on cpu cluster architectures,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2020, pp. 1–15.

[49] M. Xie, K. Ren, Y. Lu, G. Yang, Q. Xu, B. Wu, J. Lin, H. Ao, W. Xu, and
J. Shu, “Kraken: memory-efficient continual learning for large-scale real-
time recommendations,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2020, pp. 1–17.

[50] Z. Wang, Y. Wang, J. Deng, D. Zheng, A. Li, and Y. Ding, “Rap:
Resource-aware automated gpu sharing for multi-gpu recommendation
model training and input preprocessing,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, 2024, pp. 964–979.

[51] F. Zhang, J. Zhai, X. Shen, O. Mutlu, and X. Du, “POCLib: a high-
performance framework for enabling near orthogonal processing on
compression,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 2, pp. 459–475, 2022.

[52] X. Miao, Y. Shi, H. Zhang, X. Zhang, X. Nie, Z. Yang, and B. Cui,
“HET-GMP: A graph-based system approach to scaling large embedding
model training,” in SIGMOD ’22: International Conference on Man-
agement of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Z. Ives,
A. Bonifati, and A. E. Abbadi, Eds. ACM, 2022, pp. 470–480.

[53] M. Adnan, Y. E. Maboud, D. Mahajan, and P. J. Nair, “Accelerating

recommendation system training by leveraging popular choices,” Proc.
VLDB Endow., vol. 15, no. 1, pp. 127–140, 2021.

[54] S. Agarwal, C. Yan, Z. Zhang, and S. Venkataraman, “Bagpipe: Ac-
celerating deep recommendation model training,” in Proceedings of the
29th Symposium on Operating Systems Principles, 2023, pp. 348–363.

[55] Z. Wang, Y. Wang, B. Feng, G. Huang, D. Mudigere, B. Muthiah,
A. Li, and Y. Ding, “OPER: Optimality-Guided embedding table
parallelization for large-scale recommendation model,” in 2024
USENIX Annual Technical Conference (USENIX ATC 24). Santa
Clara, CA: USENIX Association, Jul. 2024, pp. 667–682. [Online].
Available: https://www.usenix.org/conference/atc24/presentation/wang

[56] L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. M. Hazelwood, B. Jia, H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C. Wu, M. Hempstead, and X. Zhang, “Recnmp: Accel-
erating personalized recommendation with near-memory processing,”
in 47th ACM/IEEE Annual International Symposium on Computer
Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020. IEEE,
2020, pp. 790–803.

[57] W. Jiang, Z. He, S. Zhang, T. B. Preußer, K. Zeng, L. Feng, J. Zhang,
T. Liu, Y. Li, J. Zhou, C. Zhang, and G. Alonso, “Microrec: Efficient
recommendation inference by hardware and data structure solutions,”
in Proceedings of Machine Learning and Systems 2021, MLSys 2021,
virtual, April 5-9, 2021, A. Smola, A. Dimakis, and I. Stoica, Eds.
mlsys.org, 2021.

[58] X. Sun, H. Wan, Q. Li, C.-L. Yang, T.-W. Kuo, and C. J. Xue, “Rm-
ssd: In-storage computing for large-scale recommendation inference,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 1056–1070.

[59] H. Liu, L. Zheng, Y. Huang, C. Liu, X. Ye, J. Yuan, X. Liao, H. Jin,
and J. Xue, “Accelerating personalized recommendation with cross-
level near-memory processing,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–13.

[60] Google, “XLA: Optimizing Compiler for Machine Learning,” https://
www.tensorflow.org/xla, 2023.

[61] P. Tillet, H.-T. Kung, and D. Cox, “Triton: an intermediate language and
compiler for tiled neural network computations,” in Proceedings of the
3rd ACM SIGPLAN International Workshop on Machine Learning and
Programming Languages, 2019, pp. 10–19.

[62] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“Taso: optimizing deep learning computation with automatic generation
of graph substitutions,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 47–62.

[63] A. Li, B. Zheng, G. Pekhimenko, and F. Long, “Automatic
horizontal fusion for GPU kernels,” in IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2022, Seoul,
Korea, Republic of, April 2-6, 2022, J. W. Lee, S. Hack, and
T. Shpeisman, Eds. IEEE, 2022, pp. 14–27. [Online]. Available:
https://doi.org/10.1109/CGO53902.2022.9741270

[64] G. Huang, Y. Bai, L. Liu, Y. Wang, B. Yu, Y. Ding, and Y. Xie, “Alcop:
Automatic load-compute pipelining in deep learning compiler for ai-
gpus,” Proceedings of Machine Learning and Systems, vol. 5, 2023.

[65] Z. Chen, A. Kerr, R. Cai, J. Kosaian, H. Wu, Y. Ding, and Y. Xie,
“Evt: Accelerating deep learning training with epilogue visitor tree,” in
Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2024, pp. 301–316.

[66] D. Zhuang, Z. Zheng, H. Xia, X. Qiu, J. Bai, W. Lin, and
S. L. Song, “MonoNN: Enabling a new monolithic optimization
space for neural network inference tasks on modern GPU-Centric
architectures,” in 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24). Santa Clara, CA: USENIX
Association, Jul. 2024, pp. 989–1005. [Online]. Available: https:
//www.usenix.org/conference/osdi24/presentation/zhuang

https://doi.org/10.1109/ISCA45697.2020.00045
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset
https://www.usenix.org/conference/osdi22/presentation/zhu
https://doi.org/10.1145/3373376.3378508
https://www.usenix.org/conference/osdi22/presentation/zeng
https://www.usenix.org/conference/atc24/presentation/wang
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://doi.org/10.1109/CGO53902.2022.9741270
https://www.usenix.org/conference/osdi24/presentation/zhuang
https://www.usenix.org/conference/osdi24/presentation/zhuang

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 This paper proposes RecFlex, a recommendation
model optimization system that optimizes the em-
bedding operations by selecting distinct schedules for
different feature fields within the fused GPU kernel.
RecFlex outperforms state-of-the-art recommenda-
tion model libraries and compilers significantly.

C2 The interference-aware schedule tuner within
RecFlex proposes a two-stage interference-simulated
schedule tuning, which tunes per-feature schedules
effectively and outperforms the direct separate-
combine approach.

C3 The heterogeneous schedule fusion compiler within
RecFlex proposes runtime thread mapping for gener-
ated GPU kernels, which can handle dynamic work-
loads efficiently and outperform the two static thread
mapping strategies.

B. Computational Artifacts

A1 https://zenodo.org/doi/10.5281/zenodo.12158626

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figures 9-10
Table 2

A1 C2 Figures 11

A1 C3 Figure 13

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact contains the source codes of the entire RecFlex
system, including the components interference-aware schedule
tuner and heterogeneous schedule fusion compiler.

Expected Results

C1 RecFlex should be faster than TensorFlow, RECom,
HugeCTR, and TorchRec on the GPU.

C2 The GPU kernels generated by the two-stage
interference-simulated schedule tuning should be
faster than the ones tuned by the direct separate-
combine approach.

C3 The GPU kernels with runtime thread mapping
should be faster than the ones with static thread
mapping strategies.

Expected Reproduction Time (in Minutes)

The expected dataset generation time is 20 min. The ex-
pected schedule tuning time of RecFlex for each dataset on
DGX-1 is 240 min. The expected execution time of RecFlex is
5 min. The expected setup and execution time of the baselines
is about 180 min.

Artifact Setup (incl. Inputs)

Hardware: We use NVIDIA V100 and A100 GPUs in
the evaluation. Using multiple GPUs (e.g., DGX-1 with eight
GPUs) can accelerate the schedule tuning time. The minimum
required disk space is 600GB.

Software: The Python and CUDA versions used in the
evaluation are 3.8 and 11.8, respectively. For the evaluation
of RecFlex and TorchRec, we use PyTorch with the version
2.2.0. The TorchRec version is 0.6.0 with FBGEMM 0.6.0. For
TensorFlow and RECom, we use TensorFlow 2.6.2, which is
the version supported by RECom. For HugeCTR, we use its
official image with version 23.04.

The corresponding URLs are:
• PyTorch: https://github.com/pytorch/pytorch
• TorchRec: https://github.com/pytorch/torchrec
• TensorFlow: https://github.com/tensorflow/tensorflow
• RECom: https://github.com/AlibabaResearch/recom
• HugeCTR: https://github.com/NVIDIA-Merlin/

HugeCTR
Datasets / Inputs: Run ‘SC artifact/datagen.sh’ to call the

script ‘data synthesis/data generate.py’ to generate all the
datasets used in our evaluation. This script generates the
dataset based on given per-feature data distribution and table
shape configurations, which can be found in each sub-folder
under ‘examples/models’.

Installation and Deployment: We use the docker image
‘nvidia/cuda:11.8.0-cudnn8-devel-ubuntu20.04’ as the basic
execution environment. After launching the corresponding
container, please follow the instructions in ‘README.md’
to set up the environment, including installing Python 3.8,
PyTorch 2.2.0, CMake 3.28.3, and NVIDIA Nsight System
2023.4.1. Alternatively, users can also use the Dockerfiles
under ‘SC artifact’ to construct the images, which already
contain the dependent packages.

Artifact Execution

Individual tasks:
T1 Generate datasets A-E.
T2 Use RecFlex to tune schedules and then benchmark

the final generated kernels.
T3 Benchmark TensorFlow and RECom.
T4 Benchmark TorchRec.
T5 Benchmark HugeCTR with models D and F.
T6 Tune schedules by the direct separate- combine ap-

proach and then benchmark newly generated kernels.

https://zenodo.org/doi/10.5281/zenodo.12158626
https://github.com/pytorch/pytorch
https://github.com/pytorch/torchrec
https://github.com/tensorflow/tensorflow
https://github.com/AlibabaResearch/recom
https://github.com/NVIDIA-Merlin/HugeCTR
https://github.com/NVIDIA-Merlin/HugeCTR

T7 Generate kernels with static thread mapping and then
benchmark them.

T8 Plot all figures.
Note that all the experimental parameters are provided in

the execution scripts.
Dependencies:
D1 T1 → T2, T3, T4, T5, T6

D2 T2 → T7

D3 T2, T3, T4, T5, T6, T7 → T8.

Artifact Analysis (incl. Outputs)

Figures 9-13 in the paper will be generated.

Artifact Evaluation (AE)
A. Computational Artifact A1

Artifact Setup (incl. Inputs)

We have provided two Dockerfiles to allow users to prepare
the execution environments, where one is for RecFlex and
TorchRec, and the other is for TensorFlow and RECom.

The instructions to build Docker images are:
cd SC_artifact
docker build -f ./Dockerfile -t recflex:latest .
docker build -f ./TF.Dockerfile -t recom:latest .

Then, after launching the containers, run the following com-
mands in the code directory to install RecFlex and generate
datasets:
pip install .
./post_install.sh # only required in recflex container
./SC_artifact/datagen.sh

We have integrated these setup and execution commands
within a script, so you do not need to run each command
manually.

Artifact Execution

We have integrated the setup and execution commands
within ‘SC artifact/run all.sh’, which can reproduce figures 9-
10 in the paper directly.
./SC_artifact/run_all.sh

Note that the script assumes there are four GPUs
available. If the number of GPUs is not four, the en-
vironment variable CUDA_VISIBLE_DEVICES used in
‘SC artifact/run recflex.sh’ needs to be adjusted accordingly.

In detail, this script contains the following execution steps:
1) Setup the execution environment and prepare the dataset

as illustrated in Artifact Setup.
2) Run ‘SC artifact/run recflex.sh’ to use RecFlex to tune

the optimal schedules based on tuning data and then
use Nsight System to profile the execution time of the
generated kernels on the test data.

3) Run ‘SC artifact/run torchrec.sh’ to profile the execu-
tion time of TorchRec.

4) Run ‘SC artifact/run tf recom.sh’ to profile the execu-
tion time of TensorFlow with and without the compila-
tion optimization of RECom.

5) Run ‘SC artifact/run hugectr.sh’ in HugeCTR’s official
container to profile the execution time of HugeCTR.

6) Run ‘SC artifact/plot.sh’ to generate the figures based
on the data collected in previous steps.

Artifact Analysis (incl. Outputs)

After executing the script, there will be two
figures, ‘kern.pdf’ and ‘e2e.pdf’, under the directory
‘SC artifact/outputs’. They correlate figures 9 and 10 in the
paper, respectively.

These figures illustrate the normalized embedding kernel
and model execution performance of RecFlex and the base-
lines. The expected results are that RecFlex can achieve the
highest performance among these systems.

	Introduction
	Background and Motivation
	Feature Heterogeneity of Recommendation Models
	Limitation of Existing Solutions and New Opportunity
	Challenges

	RecFlex Overview
	RecFlex Design
	Interference-aware Feature Schedule Tuner
	Problem definition
	Two-stage interference-simulated schedule tuning
	Generally optimal schedule selection based on historical data

	Heterogeneous Schedule Fusion Compiler

	Implementation
	Evaluation
	Experimental Setup
	Kernel Performance
	End-to-end Model Performance
	Ablation Study
	Overhead Analysis

	Discussions
	Related Work
	Conclusion
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Computational Artifact A1

