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Abstract—Industrial recommendation models typically involve
numerous feature fields. The embedding computation workloads
are heterogeneous across these fields, thus requiring varied op-
timal code schedules. While existing solutions apply basic fusion
optimization for embedding operations, they inefficiently treat
all feature fields with identical schedules, leading to suboptimal
performance. In this paper, we introduce RecFlex, which gen-
erates fused Kkernels with distinct schedules for different feature
fields. RecFlex employs the interference-aware schedule tuner to
tune schedules and the heterogeneous schedule fusion compiler
to generate fused kernels, addressing two major challenges. To
determine optimal schedules of different feature fields within
the fused kernel, RecFlex proposes a two-stage interference-
simulated tuning strategy. To handle dynamic workloads that
challenge tuning and fusion, RecFlex combines compile-time
schedule tuning with runtime kernel thread mapping. RecFlex
surpasses state-of-the-art libraries and compilers, achieving av-
erage speedups of 2.64x, 20.77x, and 11.31x over TorchRec,
HugeCTR, and RECom, respectively. RecFlex is publicly avail-
able at https://github.com/PanZaifeng/RecFlex.

Index Terms—recommender system, machine learning com-
piler

I. INTRODUCTION

In recent years, deep recommendation models have been
extensively utilized across enterprises and business scenarios,
such as video rankings at Google Youtube [1], [2], online
advertising applications at Meta [3]-[5], and e-commerce at
Alibaba [6]-[10]. Unlike other prevalent deep neural networks
(DNNp), a typical recommendation model exhibits a distinctive
structure featuring two key parts: the embedding layers and
the DNN layers. Specifically, the embedding layer transforms
the inputs of different features' (e.g., user IDs and product
IDs) into representative embedding vectors by performing
embedding table lookup and pooling operations. To achieve
high model quality, developers have incorporated hundreds
to thousands of features [11]-[13] into their models in pro-
duction. These features introduce numerous memory-intensive
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'We use feature to represent feature field in this paper for abbreviation.
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embedding operations, making the execution of embedding
layers quite time-consuming [12], [14].

Traditional machine learning (ML) frameworks [15], [16]
execute embedding operations (including embedding lookup
and pooling) separately for each feature, resulting in low GPU
utilization and significant GPU kernel launch overhead [12],
[14]. To tackle this performance problem, existing solutions
[12], [14], [17], [18] fuse the embedding operations through
manually written libraries or compilation optimization. These
works treat all features equally with identical code schedules?
in the fused kernel. However, we find that the numerous
features in an industrial recommendation model are hetero-
geneous, i.e., the computation workloads vary significantly
among features (detailed in Section II-A). Existing solutions
that apply a single code schedule for heterogeneous features
within a model lead to poor performance for most features.

Given the limitations of existing solutions, there is a poten-
tial to further optimize the embedding operations by generating
distinct schedules for different features according to their
workload characteristics. However, enabling this optimization
poses two major challenges. First, it is challenging to find
the optimal schedules of all features in the final fused kernel
of the embedding operations. Directly combining the best
schedule of each feature based on its separate latency will
fail to achieve the overall best performance due to interference
among schedules in the fused kernel. The interference includes
occupancy constraint, i.e., the maximum number of active
warps per streaming multiprocessor (SM), and resource con-
tention. Enumerating the schedule combinations of all features
is also impractical, as the search space is too large. Second, the
dynamic computation workloads of recommendation models
make both kernel fusion and schedule tuning challenging.
Existing code schedule generators and tuners [21]-[26] rely
on static workloads to guide thread mapping of the generated
kernels and optimal schedule identification.

2In the field of ML compilers and code generation, schedule [19], [20] refers
to how the code is organized to map to hardware, like the tiling approach,
thread mapping method, loop orders, etc.
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To this end, we propose RecFlex, a system that optimizes
the time-consuming embedding operations of recommendation
models by enabling feature heterogeneity-aware optimization
with flexible schedules. RecFlex comprises two key com-
ponents, the interference-aware schedule tuner and the het-
erogeneous schedule fusion compiler. The schedule tuner is
responsible for efficiently identifying the optimal schedules
for all features, while the fusion compiler generates the fused
GPU kernel based on the per-feature schedules.

To address the first challenge of optimal schedule identifica-
tion, RecFlex’s schedule tuner adopts a two-stage interference-
simulated strategy that accounts for inter-feature interference.
It first tunes the optimal per-feature schedule with different
occupancy constraint values in the local stage. This stage
involves controlling occupancy values explicitly to eliminate
the per-feature schedule’s dependency on the fused kernel
occupancy and padding thread blocks to simulate inter-feature
resource contention. Subsequently, in the global stage, it
further tunes the overall optimal occupancy value. To solve
the challenge of dynamic workloads, we propose a combined
approach. During compilation, we leverage the recent distri-
bution of historical inputs to tune generally optimal schedules
and update them periodically. At runtime, we analyze the input
workload on the host side to determine thread mapping, thus
averting GPU workload imbalances or resource wastage.

We integrate the fused kernel generated by RecFlex with
PyTorch [15] framework and evaluate RecFlex on recom-
mendation models and datasets synthesized based on our
observation of production models. Experimental results show
that compared to TorchRec [17], HugeCTR [18], and RECom
[12], the fused kernels generated by RecFlex achieve average
speedups of 2.64x, 20.77x, and 11.31x, respectively. We
summarize our contributions as follows:

o We reveal the feature heterogeneity in industrial deep
recommendation models and identify the limitations of
existing solutions.

o« We propose RecFlex, a recommendation model opti-
mization system that enables feature heterogeneity-aware
optimization in the fused GPU kernels with flexible
schedules. To our knowledge, this is the first work to
discuss schedule tuning considering inter-schedule inter-
ference for horizontal fusion.

« Extensive experiments demonstrate the effectiveness of
our tuning strategy and showcase that RecFlex achieves
significant improvements over state-of-the-art baselines.

II. BACKGROUND AND MOTIVATION
A. Feature Heterogeneity of Recommendation Models

Deep recommendation models and embedding opera-
tions. As shown in Figure 1, a typical deep recommendation
model’s embedding layers contain a set of embedding tables,
which transform the input from various feature fields into rep-
resentative embedding vectors through embedding operations.
The embedding vectors are then concatenated to be fed into the
subsequent DNNSs to predict the output value (e.g., the click-
through rate). The dotted rectangle in Figure 1 illustrates the
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Fig. 2.  Embedding dimension and input workloads can vary significantly
among features.

(b) Pooling factor distribution.

embedding operations for feature N. An input sample of the
operation consists of single or multiple lookup IDs, which
are used to retrieve corresponding rows in the embedding
table. Then, the retrieved embedding vectors of the same
sample will be applied by a pooling operation (i.e., element-
wise reduction) to get the final lookup output. Production
recommendation models often contain thousands of features,
and the corresponding embedding operations can account for
most of the end-to-end execution time [11], [12].

Heterogeneity across features. By profiling the production
models deployed at real businesses, we observe that the
embedding table characteristics and input workloads vary
significantly among features. For a specific feature, we denote
the number of retrieved embedding vectors in a particular
sample as pooling factor [13], and the row vector dimension
of its embedding table as embedding dimension. Figure 2(a)
reports the embedding dimension distribution of a recommen-
dation model, which ranges from single digits to hundreds.
Figure 2(b) presents the pooling factors of four features
in 50 samples. Due to variations in embedding dimension
and pooling factors, each feature has distinct memory access
and computation patterns. We use feature heterogeneity to
represent this phenomenon in the paper.

B. Limitation of Existing Solutions and New Opportunity

To avoid the inefficient separate execution of embedding
operations for different features, existing works [12], [14],
[17], [18] propose fusing all embedding operations into a
single GPU kernel through a library or compiler approach.
For example, RECom [12], an optimizing compiler for rec-
ommendation model inference, achieves an 11.20x speedup
on production models after enabling cross-embedding fusion.
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Fig. 3. Normalized performance of different schedules on particular features
with their distinct workloads. The embedding dimensions for both features
are 32. Pooling factors for feature 0 follow a normal distribution N (50, 10%)
with a 0.3 coverage [13], while feature 1 has fixed pooling factors of 50.

However, we observe a key limitation of these works: they
treat all features equally within their fused kernels. NVIDIA
HugeCTR library [18] only supports creating an embedding
layer with the same embedding dimension for all features.
RECom [12] evenly distribute the embedding operations of
different features to individual GPU blocks. TorchRec [17]
selects the pre-compiled fused kernels based on the maximum
embedding dimension among all tables. They all overlook the
significant feature heterogeneity common in real businesses.

Opportunity: apply distinct schedules for different fea-
tures in the fused kernel. To quickly verify the feasibility
of this idea, we conduct a microbenchmark to evaluate the
performance of different schedules on two particular features
whose computation workloads are different, and show the
results in Figure 3. We observe that, for a specific feature,
different schedules can have a performance gap of up to
86.4%. Additionally, the optimal schedules of these two fea-
tures are not the same due to feature heterogeneity. Therefore,
it has great potential to improve the fused kernel performance
by enabling distinct schedule optimization to handle feature
heterogeneity.

C. Challenges

In this section, we mainly discuss the challenges of enabling
heterogeneous schedule optimization and the problems of
several straw-man solutions.

Challenge I: determining optimal schedules in the fused
kernel. Existing code schedule generation works [21]-[25] are
designed for conventional DNN models, where the execution
of multiple operators is performed sequentially so that they
can tune each schedule (corresponding to a fusion group
or an operator) one by one separately. In contrast, for the
embedding operations of recommendation models, we have to
tune the schedules for numerous features in the fused kernel
and consider inter-feature interference.

Straw-man solution 1: tune separately and combine. A
straightforward way is to tune the schedules separately by
generating and measuring non-fused kernels for each feature,
and then combine these schedules together. However, lower
separate latencies do not always indicate a lower latency
of the fused kernel due to inter-feature interference. Each
feature’s selected schedule might utilize more resources like
SMs and involve more memory accesses. It can introduce

intensive resource contention among different features in the
fused kernel, causing overall performance degradation. More-
over, the selected schedule might constrain the overall kernel
occupancy due to high shared memory and register usage. This
can significantly impact other features if their corresponding
schedules rely on a high occupancy to increase concurrency
and hide instruction latency.

Straw-man solution 2: tune holistically. Another way
is to regard the fused kernel containing various schedules
as a holistic entity and then tune it by enumerating all
schedule combinations. However, this method is intractable
as it requires exponential compilation and measurement time.
For example, assume we have a model with F' = 100 features,
and for each feature, we have N = 4 schedule candidates for
tuning. Then, we have N¥' = 4190 ~ 10%° combinations, and
it is impossible to compare such a large number of kernels.

Challenge II: handling dynamic workloads. As shown in
Figure 2(b), the pooling factors of input tensors of a model can
vary significantly among samples. This causes the computation
workloads to be only known at runtime. The varied batch sizes
and the absence of features also contribute to the dynamics.
Dynamic workloads make it difficult to determine the thread
mapping of each schedule in the fused kernel, i.e., use which
thread groups to process each of the features. Existing libraries
[17], [18] use a uniform schedule so that each thread group
can identify its responsible feature in easy ways, like dividing
the group ID by a constant number. These simple methods no
longer work well when using heterogeneous schedules, as the
required thread group number varies across features. Further-
more, dynamic workloads challenge the tuning processes of
existing schedule tuners [21], [22], [25], which require static
workload information to measure the schedule performance.

Straw-man solution to thread mapping: static mapping
based on the maximum/average historical workloads. A
naive idea is to allocate fixed thread groups to each fea-
ture based on its maximum or average historical workloads
and then adjust the per-thread workload adaptively. In this
way, each thread group can identify the feature to process
at compile-time, thus avoiding the complexity of runtime
thread mapping. The problem with this solution is that the
workload varies significantly among samples and batches. For
example, the standard deviation of pooling factors can be up
to hundreds. In this case, if we aggressively allocate the thread
groups based on the maximum workload, most of the threads
can be idle during the computation. If we use the average
workload instead, performance will also be affected when large
workloads arrive, leading to a workload imbalance among
GPU thread groups.

Straw-man solution to schedule tuning: runtime sched-
ule selection. To ensure the operator performance with arbi-
trary workloads, some dynamic shape compilers [24] adopt
to adaptively select the most suitable schedule for the sep-
arated operators in DNN layers based on input shapes at
runtime. However, when applied to the embedding layers, this
method requires preparing N¥ combinations of schedules for
runtime selection, which is infeasible. Another alternative is
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Fig. 4. RecFlex overview.

to accommodate all the schedules into the fused kernel and
use internal branches for each feature to facilitate runtime
selection. While this approach reduces the number of compiled
kernels, overall occupancy is constrained by the most resource-
intensive schedules, potentially decreasing performance. Note
that no matter whether they will be executed at runtime, all
branches of a GPU kernel are compiled and impact the overall
occupancy. Besides, this alternative exacerbates the challenge
of thread mapping, as different schedules can demand distinct
thread mapping schemes.

In summary, the straw-man solutions of holistic tuning and
runtime schedule selection are intractable with exponential
time complexity, while the separate-combine tuning and static
thread mapping can lead to sub-optimal performance. We
present the performance analysis of the latter two solutions
in Section VI-D.

III. RECFLEX OVERVIEW

We present the system overview of RecFlex in Figure 4,
which contains the interference-aware schedule tuner (Sec-
tion IV-A) and the heterogeneous schedule fusion compiler
(Section IV-B). To use RecFlex to optimize the embedding
operations, users are required to provide per-feature sched-
ule candidates and embedding table specifications. Then, the
schedule tuner of RecFlex will tune the schedules based on
the historical input data of the models. The tuner relies on
the fusion compiler to generate fused GPU kernels of the
being-tuned schedules for latency measuring. Finally, the tuner
figures out the optimal schedules of all features and feeds them
to the compiler to output the optimal fused kernel.

Solution to challenges. RecFlex enables the feature
heterogeneity-aware optimization by addressing the challenges
discussed in Section II-C effectively. To determine the op-
timal schedules in the fused kernel, the schedule tuner of

RecFlex adopts a two-stage interference-simulated schedule
tuning strategy (Section IV-A2) that considers inter-feature
interference and tunes the schedules in polynomial time. To
solve the problems of dynamic workloads, we propose a
combined approach that tunes the generally optimal schedules
based on historical data at compile-time (Section IV-A3) and
determines the thread mapping based on input workloads at
runtime (Section 1V-B).

IV. RECFLEX DESIGN

A. Interference-aware Feature Schedule Tuner

This section presents the design of RecFlex’s schedule
tuner. The tuner identifies the generally optimal schedules by
taking inter-feature interference into account, including overall
occupancy constraints and resource contention.

1) Problem definition: Suppose we have a model with F'
features, and for each feature f € [1, F], we have N + schedule
candidates SU) = {S%f ) .. ,S](\‘,ff)}. We define the selected
set of schedules in the fused kernel as s = {s(1) ... s(F)},
where s/) ¢ S vf € [1,F]. Then, the target of the
schedule tuner is to find the set of schedules s in the search
space S = {SM) ... SUIY that:

msinL(S;ﬁ) (1)

where ¢ is the input data, and L(-) is the fused kernel latency
with given schedules and data. Let I;(-) be the execution time
of GPU thread block b with the given schedules and inputs,
ll(,f )() be the time of block b used to process feature f (we
suppose different features use separate block groups, which
will be discussed in Section IV-B), and ¢(/) be the input data
of feature f. Then, we can get an approximation:

L(s;€) ~ Zblb(s§§) _Zfzbllgf)(s(f);g(f))
SO UGN -0)W —  #SM-O/W

2

where #SM is the number of SMs on the GPU, O is the
occupancy of the fused kernel, i.e., the maximum active warps
per SM, and W is the number of warps per thread block.
Figure 5 shows a GPU kernel execution example to illustrate
this approximation. In the figure, we suppose the GPU has
two SMs, and the maximum number of active blocks per SM
is O/W = 2, so the number of blocks that can be executed in
parallel is #SM -O/W = 4. Whenever a running block exits,
the GPU scheduler immediately schedules a pending block
to the released SM. After a block is dispatched to an SM,
it runs non-preemptively until it finishes. Therefore, we can
approximate the kernel latency by summing up the execution
time of all blocks and then divide it by the number of parallel
blocks, if the total number of blocks is large enough so that the
tail effect is negligible. Based on our observation, even during
online serving, the batching systems [5], [16] can dispatch a
large enough batch of requests to a GPU, so we consider the
approximation to be reasonable.
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Fig. 5. An illustration example of the kernel execution on the GPU.

2) Two-stage interference-simulated schedule tuning: 1t is
impractical to tune all schedule combinations to solve Equa-
tion 2 directly. Instead, we decompose the original problem
into F' sub-problems, where the objective for each sub-
problem is to find the schedule s(/) that:

SO U (s0; €0
b

with the overall kernel occupancy O constraint. Due to the
inter-feature interference, we cannot directly solve each sub-
problem independently. We need to eliminate the occupancy
dependency of each sub-problem on the schedules of other
features and consider the implicit inter-feature interference.

Two-stage occupancy-controlled tuning. During tuning
the schedules of different features in separate kernels accord-
ing to Equation 3, we control the occupancy of all features
explicitly to provide a uniform O for all sub-problems. This
is achieved by explicitly limiting register usage and spilling
overflowed registers to global memory for kernels with low
occupancy, while padding shared memory usage for kernels
with high occupancy. With the explicitly controlled occupancy,
we introduce a local-global two-stage approach to tune the
optimal schedules:

min

i [ ELF] 3

e Local stage: With given schedule candidates of each
feature, we first enumerate all possible occupancy values
(the count is often less than ten) based on the GPU
hardware. Then, for each occupancy value, we perform
the interference-simulated schedule tuning (detailed in the
next part) to solve Equation 3 to get the optimal schedule
of each feature.

e Global stage: After obtaining the optimal schedule set
with each possible occupancy value, we utilize the fusion
compiler of RecFlex to generate the corresponding fused
kernel and measure its performance. Finally, we choose
the optimal occupancy and schedules based on their
corresponding kernel performance. Formally, the goal of
this stage is to find the occupancy Oy that minimizes:

min Lo, (sk; &) “4)

where s;, is the selected schedule set corresponding to

occupancy Oy, in the local stage, and Lo, (+) is the fused
kernel latency with explicitly controlled Oy.

We show this two-stage procedure in Figure 6. Suppose K

is the number of possible occupancy values, so in the local

stage, we tune the optimal schedules for all the occupancy
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Fig. 6. The two-stage schedule tuning procedure of RecFlex. Oy, - ,Oxk

are K possible occupancy values. i,(cf ) refers to the index of optimal schedule
candidate for feature f with occupancy Oy.

values through O; to Ok . Then, we perform occupancy tuning
in the global stage to determine the optimal occupancy value
and schedule set. For the per-feature schedule tuning in the
local stage with a specific occupancy, we only need to compile
one kernel (detailed in the next part), so the time complexity
of the local stage is O(F'- K), and the complexity of the entire
two stages is O(F - K + K). This means that we can solve
the problem in polynomial time.

Interference-simulated per-feature schedule tuning. To
effectively tune per-feature schedules in the local stage, we
propose an interference-simulated approach to simulate the
running environment with inter-feature interference of the
fused kernel and effectively compare different schedule candi-
dates. The insight is that although it is quite difficult to predict
the block execution time [ l()f ) (+) accurately to solve Equation 3
due to inter-feature interference [27], [28], we can compare the
schedules under the same simulated environment without the
exact value of ll()f)(-).

For each feature f, we simulate the GPU SM-level and grid-
level resource contention in the final fused kernel by padding
GPU blocks. First, this padding strategy fills the SMs with the
maximum number of allowable parallel blocks, enabling the
simulation of resource contention and instruction latency hid-
ing at the SM level. Without such padding, a single feature’s
input workload that fails to saturate the GPU would result in
the launched blocks being dispatched to separate SMs due to
the GPU’s round-robin scheduling. This leads to an absence
of intra-SM interference, making that changing the controlled
occupancy does not affect the block execution times. Second,
by incorporating redundant embedding operations within these
padding blocks, we can simulate the grid-level global memory
and L2 cache access patterns.

Furthermore, for effective comparison, we accommodate all
schedule candidates in the same GPU kernel so that we can
co-execute them in the same environment. Then, according to
Equation 3, for each schedule candidate, we measure and sum
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its corresponding block execution time and compare it with
others. For the candidate with the lowest execution time sum,
we regard it as the optimal one that outperforms others in the
final fused kernel, which involves many resource contention.

Figure 7 shows an illustration example of the interference-
simulated tuning with co-execution of schedule candidates
and block padding. We rely on the schedule fusion com-
piler of RecFlex to generate the kernel with co-execution
and padding and duplicate the input data ¢(/) for all fused
schedules. Although the simulation cannot provide the totally
same environment as in the final fused kernel, we find this
approach simple yet effective for the optimal schedule tuning
(see Section VI-D for the evaluation).

3) Generally optimal schedule selection based on historical
data: As discussed in Section II-C, it is infeasible to perform
runtime schedule selection due to the extremely large number
of combinations. Meanwhile, recent works [5], [13] point out
that the input data of a recommendation model follow the same
distribution in a certain time period, which provides them with
opportunities to predict future distribution by profiling histor-
ical data. With this insight, we measure the block execution
time on the historical data in a certain period during tuning
and then choose the schedules with the lowest average time.
That is, we adjust the problem definition from Equation 1 to:

msin lz L(s; 51)] @)

where ¢; is the i-th batches in the sampled historical data.
Besides, we re-tune the schedules periodically (e.g., several
days) to handle the distribution shifts [11], [13]. In this way,
the selected schedules are generally optimal in each period.

B. Heterogeneous Schedule Fusion Compiler

In this section, we present the design of RecFlex’s heteroge-
neous schedule fusion compiler, which generates a fused GPU
kernel (shown in Figure 8) to process different features with
flexible schedules. We illustrate how the compiler addresses
the challenge of dynamic workloads and discuss several design
choices during codegen.

Runtime thread mapping with host-side workload anal-
ysis. As discussed in Section II-C, static thread mapping at
compile-time cannot meet the requirements of the dynamic
workloads, so we resort to the runtime thread mapping based
on the input workloads. In this way, we can allocate an

adaptive number of GPU thread groups to avoid workload im-
balance and resource wastage. However, performing runtime
thread mapping is a non-trivial task, as each thread group
needs to identify its corresponding feature and its relative
position within the groups for the same feature. Directly
analyzing the inputs within the fused GPU kernels and then
performing thread mapping requires the technologies of persis-
tent threads [29], [30] or dynamic parallelism [31], which are
complicated and can cause performance degradation. Instead,
we utilize the host-side CPUs to determine the thread mapping
and then pass the mapping information to the GPU. Besides
its simplicity, we adopt this design for two reasons. First,
before performing embedding operations, the input features
are often applied with preprocess operations such as string
split on the CPUs within the same node or from other nodes
[8], [12], [32]. Therefore, we can modify these preprocess
operations by adding extra workload analysis per data reading,
thus hiding the computation overhead. Second, we only need
to retrieve several bytes from DRAM for each thread group,
which introduces negligible kernel overhead.

Feature thread mapping unit selection. We choose the
GPU thread block as the basic thread mapping unit and
dispatch multiple blocks to each feature. The first reason
is convenience, as GPU thread blocks have separate shared
memories, which is easy for management. CUDA also pro-
vides many convenient block-level intrinsic instructions, like
the synchronization barrier. Second, choosing block as the
basic unit is suitable for recommendation inference workloads,
where the batch size of most queries is around hundreds. Note
that the key idea of our design is not limited to blocks but can
be extended to other thread group structures like warps or
block-clusters [31].

Argument passing. There can be thousands of schedules to
fuse, and each schedule can accept multiple input arguments.
Therefore, we cannot directly concatenate all the arguments
for the fused kernel entry, as the number of arguments for a
single function in CUDA and C/C++ is limited. Instead, we
pass an array of pointers on the GPU to the fused kernel, which
points to the real required arguments so that the schedules can
use specific indices to access their arguments.

If-else branches vs function pointer array. Using if-else
branches to dispatch the processing of different features to
the GPU blocks within the fused kernel can lead to thousands
of integer comparisons, while using a function pointer array
can directly jump to the destination function. However, we
find that using function pointer arrays can actually lead to
45.0% performance degradation compared to if-else branches.
This is because it leads to significant function call overhead
on the GPU, while using the block-level branches can make
all functions inline within the branches and only introduce
negligible overhead, even with thousands of branches.

We show an illustration example of the fused kernel in
Figure 8. We pass the thread mapping information in an array
called d_task_map to the fused GPU kernel (Line 7 in the
figure). In Line 9, we retrieve the thread mapping information
of each block, which includes feature_idx that contains



1 _ device__ void Schedulel(...) { ... }

2 __device__ void ScheduleN(...) { ... }
3 __device__ int arg_offsets[N] = { ... };
4 __device__ int schedule_map[N] = { ... };

5 _ _global__ void
6 _ launch_bounds__(BLOCK_THREADS, MAX_REG)
7 FusedKernel(void *args, int2 xd_task_map,
int *d_blocks_map) {
8 int2 task = d_task_map[blockIdx.x];
9 int feature_idx = task.x, rel_bidx = task.y;
10 int feature_blocks = d_blocks_map[feature_idx];
11 int schedule_id = schedule_map[feature_idx];

12 __shared__ union {

13 SchedulelSharedMemory s1;

14 ScheduleNSharedMemory sN;

15 }s;

16 if (schedule_id == 1) {

17 Schedulel(args + arg_offsets[feature_idx],
18 rel_bidx, feature_blocks, &s);
19 } else if (schedule_id == 2) {

20} else if (schedule_id == N) {

21 ScheduleN(args + arg_offsets|[feature_idx],
22 rel_bidx, feature_blocks, &s);
23 H

24 }

Fig. 8. An example of the fused kernel generated by RecFlex compiler.

the index of feature to process and rel_bidx that refers to
the relative block index in the blocks corresponding to the
same feature. We also retrieve feature_ blocks, which
is the total number of blocks allocated for the feature, in
Line 10 by another map array. For Line 12-13, we define
the shared memory usage of the fused kernel based on the
maximum usage of all schedules, as the schedules use separate
blocks with no shared memory overlap. For Line 16-23, we
call the schedule based on the schedule_map, which maps
the feature_idx to the shared schedules. Features with
identical embedding dimensions and workloads can have the
same optimal schedule, and sharing this schedule can reduce
code size and accelerate compilation.

V. IMPLEMENTATION

We implement the core design of RecFlex in 1.6K lines
of Python codes. We also develop several example schedule
templates for the irregular embedding operations with 2K
lines of CUDA and Python based on the kernels provided by
TensorFlow [16], TorchRec [17], and NVIDIA Thrust [33].
The generated fused GPU kernel is wrapped and registered as
a PyTorch operator [15]. Users can rely on the PyTorch API of
torch.ops.load_library to load the compiled binary
so that they can conveniently utilize the fused embedding
operator in their models to accelerate the inference.

RecFlex allows users to add customized schedule templates
by inheriting a schedule template class using Python. In the
derived class, users need to implement the interface functions
to emit the schedule code within the device function body
(Line 1 in Figure 8) based on given parameters and pre-defined

TABLE I

BASIC STATISTICS OF EVALUATED MODELS AND DATASETS.
Model  # Features  # One-hot  # Multi-hot ~ Emb. Dim.

A 1,000 500 500 4-128

B 1,200 1,000 200 4-128

C 800 0 800 4-128

D 1,000 500 500 8

E 1,000 500 500 32

variables (e.g., rel_bidx at Line 9 in Figure 8), provide the
used shared memory, and define the search space of tunable
schedule-related parameters.

VI. EVALUATION
A. Experimental Setup

Models and datasets. The commonly used datasets [34],
[35] are too simple to be representative of current production
models [11], [13], as they only have tens of features and
exhibit low feature heterogeneity. Therefore, we synthesize
some datasets based on our observation of production data
for evaluation, using different portions of feature types and
data distributions to see whether RecFlex can handle various
configurations effectively. We provide a script to generate
the input datasets (i.e., the embedding lookup indices) with
specified pooling factor distribution and embedding table
shape of each feature. Table I shows the basic statistics of
these models and datasets. The details of the model and
dataset configurations, as well as the data generation script,
can be found in our artifact repository’. Models D and E
share the same input dataset while their embedding dimensions
are different, and they both use fixed embedding dimensions
for all features to evaluate HugeCTR’s [18] fused embedding
operation (detailed in the next paragraph).

Baselines. We compare RecFlex with other recommender
frameworks, including TensorFlow (TF) [16], TorchRec [17],
HugeCTR [18]. TensorFlow [16] does not fuse the embedding
operations and processes each feature sequentially, which is
inefficient. Hence, we also add the baseline of RECom [12],
an end-to-end optimizing compiler for TensorFlow recommen-
dation models, which fuses all embedding operations into
a single GPU kernel. TorchRec [17] is a PyTorch domain
library for building recommendation models. We use the
FusedEmbeddingBagCollection for TorchRec during
the evaluation, which leverages FBGEMM [36] to enable the
fused embedding operations. NVIDIA HugeCTR [18] allows
users to create an embedding layer containing multiple tables
with the same vector dimension so that it can concatenate these
embedding tables to perform fused operations. For HugeCTR,
we only evaluate its performance on models D and E, which
have fixed embedding dimensions across features.

Testbed. We evaluate RecFlex and the baselines on an
NVIDIA V100 GPU an A100 GPU, respectively. The Python
and CUDA versions used in the evaluation are 3.8 and 11.8,
respectively. For the evaluation of RecFlex and TorchRec, we

3https://github.com/PanZaifeng/RecFlex/tree/main/data_synthesis
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use PyTorch with the version 2.2.0. The TorchRec version
is 0.6.0 with FBGEMM 0.6.0. For TensorFlow and RECom,
we use TensorFlow 2.6.2, which is the version supported by
RECom [12]. For HugeCTR, we use its official image with
version 23.04.

Evaluation method. We evaluate the inference latency of
recommendation models, but there is no fundamental reason
limiting RecFlex from optimizing the training process, except
the manual efforts to support more operators. We randomly
sample 128 batches for each evaluation model from its cor-
responding dataset. Then, we read each batch of input data
from the disk and perform the preprocess in advance. We then
measure the model execution time, accumulate the execution
time of these batches, and normalize it to the most performant
framework. Note that in production, the preprocess is executed
with many CPU threads by using highly optimized libraries,
and the optimization of the preprocessing is not the focus of
our paper. Other works [5], [14], [17], [18], [37] also adopt a
similar setting. We use NVIDIA Nsight Systems to measure
the kernel execution time accurately.

B. Kernel Performance

We first evaluate the performance of the fused embedding
kernel. Figures 9(a) and (b) reports the normalized perfor-
mance of RecFlex and the baselines on a V100 GPU and an
A100 GPU, respectively. For the TensorFlow baseline, which
launches separate GPU kernels for different features, we sum-
marize the execution time of all the embedding kernels for it.
For the HugeCTR baseline, we only show its performance on
models D and E, whose embedding dimensions are the same
across feature. Besides, we find that HugeCTR’s embedding
layer involves many other operations related to its GPU-side
embedding cache mechanism, such as cache update operations.
These operations cannot be avoided even though we place
the entire embedding table on the GPU memory. Hence, to
compare HugeCTR with others fairly, we ignore its cache-
related operations and only measure the execution time of its
fused pooling operation kernels. The results show that across
these models and datasets, RecFlex achieves average speedups
of 35.40x, 11.31x, 20.77x, and 2.64x over TensorFlow,
RECom, HugeCTR, and TorchRec on the two GPU platforms.

The performance of TensorFlow is very poor, as it executes
all embedding operations sequentially. RECom accelerates the
execution of TensorFlow significantly by automatically fusing
the embedding operations to improve GPU utilization, but its
performance is still limited by inefficient schedules and static
thread mapping. TorchRec adopts a fine-grained sample-warp
parallelism mapping and shows the best performance among
the baselines, but it still has the problem of overlooking the
feature heterogeneity within a recommendation model.

We observe that the performance of HugeCTR is worse than
RECom and TorchRec, even though HugeCTR is a vendor-
provided library and requires the same embedding dimension
across features. The reason is that HugeCTR uses a coarse-
grained sample-block parallelism mapping and processes all
features sequentially within a block, which relies on large
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Fig. 9. Embedding operation kernel performance comparison of RecFlex

and the baselines on two GPU platforms.

TABLE II
DETAILED V100 KERNEL ANALYSIS OF RECFLEX AND TORCHREC.
Metric Name TorchRec  RecFlex
Memory Throughput (GB/s) 380.28 641.43
Memory Busy (%) 28.46 40.68
Max Bandwidth (%) 38.75 65.57
L1 Cache Throughput (%) 29.20 29.46
L2 Cache Throughput (%) 23.83 40.68
Avg. Active Threads Per Warp 20.35 28.54
Avg. Not Predicted Off Threads per Warp 18.13 26.03

embedding dimensions and batch sizes to saturate the GPU.
Hence, HugeCTR recommends users create models with large
embedding dimensions as posted in its blogs. However, large
embedding dimensions for all features cannot meet the real
demand of many businesses. Many features are less important
than others, so using a large dimension for them leads to
slower convergence and memory wastage. Besides, batch sizes
during inference are often moderate due to latency constraints.

Detailed analysis. We utilize NVIDIA Nsight Compute
for a detailed analysis to understand why kernels generated
by RecFlex surpass others in performance. We collect some
metric values of RecFlex and TorchRec by running a specific
batch of model A on a V100 GPU and show them in Ta-
ble II. As embedding operations are memory-intensive, we first
compare the memory utilization-related metrics of RecFlex
and TorchRec. We observe that RecFlex excels in all memory
utilization metrics by using more suitable schedules across
features. For instance, RecFlex achieves 1.69 times the mem-
ory throughput of TorchRec, indicating superior GPU DRAM
utilization. Despite this, there is still a gap between RecFlex’s
memory bandwidth usage and the GPU’s peak capacity. This
is because the embedding operations are irregular and have
dynamic workloads, so all the provided schedule candidates
cannot fully utilize the GPU memory bandwidth. With more
schedule templates, there is potential for RecFlex to find more
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Fig. 10. End-to-end performance comparison of RecFlex and the baselines
on two GPU platforms.

efficient GPU kernels. Additionally, we report the average
number of active threads and non-predicted off threads per
warp in the table. For these thread utilization-related metrics,
TorchRec has much lower values than RecFlex. The reason
is that the uniform schedule ignores the various per-feature
workloads, causing many threads within a warp to be inactive
due to early exit or be predicted off due to warp divergence.

Dataset with an extremely large number of features.
To verify the scalability of RecFlex, we synthesize an extra
dataset with 10,000 features. Experiments show that RecFlex
still achieves a 4.2x speedup over TorchRec with this dataset.

MLPerf dataset. MLperf [38] uses TorchRec [17] as its
backend and provides a synthesized multi-hot dataset based
on criteo [39]. This dataset comprises only 26 feature fields
and exhibits low inter-feature heterogeneity. According to our
experiments, despite this dataset’s low feature heterogeneity,
RecFlex still achieves nearly the same kernel performance
as TorchRec. In many real-world applications, feature hetero-
geneity is much more significant [11], [13] so that RecFlex
can outperform TorchRec by selecting distinct schedules.

C. End-to-end Model Performance

We add an MLP layer with the hidden unit numbers 1024,
256, and 128 next to the embedding layer of each model.
We then present the end-to-end model execution time in
Figures 10(a) and (b). For HugeCTR, as we discussed in
Section VI-B, it has many GPU cache-related operations that
are not involved by other frameworks, so we only consider the
execution time of the part next to its cache-related operations.
Experimental results show that RecFlex established 7.74x,
2.69x, 6.76x, and 1.85x average speedups over TensorFlow,
RECom, HugeCTR, and TorchRec on the two GPU platforms.
The average end-to-end speedups of RecFlex are less than the
